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ABSTRACT

IDENTIFYING AND ADDRESSING IMBALANCE PROBLEMS IN VISUAL
DETECTION

Öksüz, Kemal
Ph.D., Department of Computer Engineering

Supervisor: Assoc. Prof. Dr. Sinan Kalkan

Co-Supervisor: Assist. Prof. Dr. Emre Akbaş

May 2021, 294 pages

This thesis has two aims: (Aim 1) Identifying imbalance problems in visual detection,

and (Aim 2) addressing these problems using loss functions based on performance

measures. For Aim 1, we present a comprehensive review of the imbalance problems

in object detection including a problem-based taxonomy and a detailed discussion

for each problem with its solutions and open issues. To achieve Aim 2, we identify

two challenges: (i) Average Precision (AP), the common performance measure, has

certain drawbacks. To remedy them, we propose Localisation Recall Precision (LRP)

Error as a novel performance measure. (ii) Loss functions derived from performance

measures are ranking-based functions whose derivatives are zero or infinite, thus, they

cannot directly be used with backpropagation. To overcome this, based on perceptron

learning, we propose Identity Update, a simple and general optimisation method for

ranking-based losses, which provably ensures balance in terms of total gradient mag-

nitudes of positives and negatives. Having addressed these challenges, using LRP

Error and Identity Update, we propose average LRP Loss and Rank & Sort (RS) Loss

for balanced training of visual detectors. We show that our loss functions have the
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following unique benefits: (i) They are easy-to-tune with a single hyper-parameter,

different from common methods with ∼ 7 hyper-parameters on average, (ii) they en-

force correlation among sub-tasks of visual detectors (i.e. classification and different

localisation tasks), which affects both the remaining detections after Non-Maximum-

Suppression and performance measure AP, and (iii) they are applicable to a diverse

set of visual detectors (i.e. one-stage, multi-stage, anchor-based, anchor-free, with

balanced or severely imbalanced data). As a result of these benefits, for example with

RS Loss, we train four object detection and three instance segmentation methods only

by tuning the learning rate and consistently improve their performance.

Keywords: Visual detection, segmentation, object detection, performance measure,

Average Precision, loss function, optimisation method, ranking, sorting
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ÖZ

GÖRSEL TESPİTTEKİ DENGESİZLİK PROBLEMLERİNİN
BELİRLENMESİ VE ÇÖZÜMLENMESİ

Öksüz, Kemal
Doktora, Bilgisayar Mühendisliği Bölümü

Tez Yöneticisi: Doç. Dr. Sinan Kalkan

Ortak Tez Yöneticisi: Dr. Öğr. Üyesi Emre Akbaş

Mayıs 2021, 294 sayfa

Bu tezin iki ana amacı vardır: (Amaç 1) Görsel tespitteki dengesizlik problemlerini

belirleme ve (Amaç 2) bu problemleri performans metriklerine dayanan kayıp fonksi-

yonları ile çözümleme. Amaç 1 için nesne tespit görevindeki dengesizlik problemleri

için problem-tabanlı bir sınıflandırma ve her bir problem için yöntem ve açık nokta-

ları ile birlikte detaylı bir tartışma içeren bir inceleme sunuyoruz. Amaç 2’ye ulaşmak

için iki zorluk belirliyoruz: (i) Yaygın performans metriği olan AP’nin belirli sakınca-

ları bulunmaktadır. Bunlara çare olan yeni bir performans metriği olarak Localisation

Recall Precision (LRP) Hatasını öneriyoruz. (ii) Performans metriklerinden türetilen

kayıp fonksiyonları türevleri sıfır ya da sonsuz olan sıralama-tabanlı fonksiyonlardır

ve geri yayılım ile doğrudan kullanılamazlar. Bunu aşmak için, perceptron öğrenmeye

dayanarak, sıralama-tabanlı kayıp fonksiyonları için basit ve genel bir optimizasyon

metodu olan, pozitif ve negatiflerin toplam gradyan büyüklükleri açısından ispatla-

nabilir bir denge sağlayan Identity Update’i öneriyoruz. Bu zorlukları çözümledikten

sonra, LRP Hatası ve Identity Update’i kullanarak, görsel nesne tespit edicilerin den-
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geli eğitimi için average LRP (aLRP) ve Rank & Sort (RS) kayıplarını öneriyoruz.

Kayıp fonksiyonlarımızın şu eşsiz faydaları sağladığını gösteriyoruz: (i) Ortalama

∼ 7 hiper-parametreye sahip yaygın metotlardan farklı olarak, tek hiper-parametre ile

ayarlanmaları kolaydır, (ii) Maksimum-Olmayanı-Bastırma ve performans ölçüsü AP

üzerinde etkisi olan görsel tespit edicilerin alt görevleri (sınıflandırma ve farklı ko-

numlandırma görevleri) arasındaki korelasyonu sağlamaktadırlar ve (iii) birçok farklı

metoda (tek aşamalı, çok aşamalı, çapa-tabanlı, çapasız, dengeli veya dengesiz veri

ile) uygulanabilirler. Bu faydalarının sonucunda, örneğin RS kaybımız ile sadece öğ-

renme oranını ayarlayarak dört nesne tespit edici ve üç bölütleme metodunu eğitiyor

ve performanslarını tutarlı olarak arttırıyoruz.

Anahtar Kelimeler: Görsel tespit, bölütleme, nesne tespiti, performans metriği, Orta-

lama Kesinlik, kayıp fonksiyonu, optimizasyon yöntemi, sıralama
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CHAPTER 1

INTRODUCTION

Visual detection is the simultaneous estimation of categories and locations of object

instances in an image. The location of an object can be represented in different ways

and these different ways are studied as different visual detection tasks (Fig. 1.1): e.g.

“object detection” uses boxes bounding to localise the objects, “keypoint detection”

aims to localise keypoints on objects, “instance segmentation” methods represent the

location in the pixel-level via masks, and “panoptic segmentation”, an extension of

“instance segmentation”, additionally requires the background classes in the image

to be segmented. Visual detection is a fundamental problem in computer vision with

many important applications in e.g. surveillance [1, 2], autonomous driving [3, 4],

medical decision making [5, 6], and many problems in robotics [7, 8, 9, 10, 11, 12].

Since the time when the detection was cast as a machine learning problem, the first

generation methods relied on hand-crafted features and linear, max-margin classifiers.

The most successful and representative method in this generation was the Deformable

Parts Model (DPM) [15]. After the extremely influential work by Krizhevsky et al.

in 2012 [16], deep learning (or deep neural networks) has started to dominate vari-

ous problems in computer vision and visual detection was no exception. The current

generation methods are all based on deep learning where both the hand-crafted fea-

tures and linear classifiers of the first generation methods have been replaced by deep

neural networks. This replacement has brought significant improvements in perfor-

mance: On a widely used benchmark dataset (PASCAL VOC), while the DPM [15]

achieved 0.34 Average Precision (AP), current deep learning based visual detectors

achieve around 0.80 mAP [17].

In general, a deep visual detector (a.k.a. visual detection method, visual detector)
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(a) Object Detection (b) Keypoint Detection

(c) Instance Segmentation (d) Panoptic Segmentation

Figure 1.1: Different visual detection tasks uses different representations to localise

the objects. Keypoint detection is illustrated for the “person” class. The image is

taken from the COCO dataset [13]. Detectron2 [14] is used to plot the ground truths.

comprises of a backbone network to extract features from the image, followed by at

least one detection network consisting of heads (a.k.a. sub-networks) to generate the

required outputs for the corresponding visual detection task (Fig. 1.2). To illustrate,

deep object detectors essentially adopt classification and box regression heads and in-

stance segmentation methods at least have classification and mask prediction heads.

The methods conventionally classify and predict the location of a large number (e.g.

more than 150k anchors per image in RetinaNet [18] with images of size 1333×800)

of proposals (we use “proposal” to indicate all types of object hypotheses, e.g. an-

chor, point, region-of-interest, see Chapter 2 for definitions) placed on the image in

order to capture objects in different locations and scales. To determine the label of

each proposal for supervision, each proposal is first scored against every ground truth

object based on a similarity function (e.g. Intersection-over-Union – IoU), then us-

ing a simple assignment heuristic, each proposal is labelled as “positive (foreground)

example” or “negative (background) example” (or “ignored” during training in some

cases [18]). Due to this large number of proposals, the methods typically necessitate

a non-maximum suppression (NMS) operation to discard highly overlapping predic-
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(b) A Generic Detection Network. Commonly, it is shared across different scales. Multi-

stage detectors (e.g. Faster R-CNN) have more than one detection network.
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(a) A Generic Feature Extraction Pipeline of Visual Detectors. Commonly, it 

is shared across all detection networks and heads of each (see (b)).

.

.

.

Feature maps obtained 

in different scales

Figure 1.2: A generic visual detection architecture consists of a shared feature ex-

traction network and at least one detection network. (a) A generic feature extraction

network. In order to extract features, shared backbone is commonly augmented by a

FPN-based network in order to obtain multi-scale feature maps from the image, im-

proving the detection performance across objects with different scales. (b) A generic

detection network. It is generally shared across feature maps with different scales

and consists of (i) some possible shared parameters across different heads, (ii) differ-

ent heads required to generate necessary output for the corresponding VD problem

(solid box: included in all common VD pipelines, dashed: used depending on the VD

problem and architecture), and (iii) a post-processing step including the combination

of the outputs of different heads (i.e. also includes discarding detections classified

as background possibly by thresholding classification scores) and NMS, the suppres-

sion of the duplicate detections, to obtain final VD output. While the architecture

in the figure is sufficient for one-stage detectors, multi-stage detectors have multiple

detection networks, but still use a single shared backbone.
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tions detecting the same object.

Common visual detectors can be split into two as multi-stage detectors and one-stage

detectors. Multi-stage detectors, such as Faster R-CNN [19] and Cascade R-CNN

[20], aim to decrease the large number of negative examples resulting from the prede-

fined dense proposals to a manageable size by using an initial detection mechanism

[19] which determines the regions where the objects most likely appear, called Re-

gion of Interests (RoIs). These RoIs are further processed by subsequent detection

network/networks in order to output the classification and localisation output for each

objects. Differently, one-stage visual detectors are designed to predict the detection

results directly from proposals without any initial elimination stage.

It is a well-known fact that the number of positive examples are much smaller than

the number of negative examples during the training of visual detectors (e.g. the

rate of positives to negatives is 0.001 for RetinaNet – Chapter 3), ensuing a signifi-

cant imbalance between positive and negative classes to be addressed during training.

While multi-stage visual detectors alleviate this imbalance by resorting to sampling

a balanced batch of positives and negatives among proposals in both stages during

training, one-stage visual detectors rely on loss functions (e.g. Focal Loss [18]) ro-

bust to imbalanced data. In this thesis, our focus is the imbalance problems in visual

detection tasks, and the next section discusses why there is still a need to identify and

address these problems.

1.1 Motivation and Problem Definition

In the last five years, although the major driving force of progress in visual detection

has been the incorporation of deep neural networks [18, 19, 21, 22, 23, 24, 25, 26],

imbalance problems in visual detection at several levels have also received significant

attention [27, 28, 29, 30, 31, 32, 33]. Despite the fact that almost every visual detec-

tion paper uses the terms related to balanced training (e.g. balance, imbalance, bias

etc.), these terms can be employed to refer to different types of imbalance problems.

For example, while a pioneer method, Fast R-CNN [22], refers to objective imbalance

by “the balance between the two task losses”, Focal Loss [18] focuses on class imbal-
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ance and SNIPER [31] is motivated from the difference in the scales of the objects.

On the other hand, a systematic identification and categorisation of these imbalance

problems for any visual detection task is missing in the literature.

The common approach to address these imbalance problems is to design robust loss

functions1 of the form:

LV D =
∑
k∈K

∑
t∈T

λktLkt , (1.1)

which combines Lkt , the loss function for task t on stage k (e.g. |K| = 2 for Faster

R-CNN [19] with RPN and R-CNN – Fig. 1.2), weighted by a hyper-parameter λkt .

However, this loss formulations has certain drawbacks:

(D1) The number of hyper-parameters can easily exceed 10 with additional hyper-

parameters arising from task-specific imbalance problems (Table 1.1), e.g. the

positive-negative imbalance in the classification task, and if a multi-stage ar-

chitecture is used (e.g. HTC [34] employs 3 R-CNNs with different λkt ). Thus,

although such loss functions have led to unprecedented successes in several

benchmarks, they necessitate tuning, which is time consuming, leads to sub-

optimal solutions and makes fair comparison of methods challenging.

(D2) This loss formulations consider each task independently and does not correlate

them (e.g. classification, box regression and mask prediction), and hence, does

not guarantee high-quality localisation for high-precision examples, which have

a positive effect on both NMS and performance evaluation measure (Fig. 1.3).

(D3) Despite designed for the similar detection tasks (i.e. multi-stage detectors can

be represented as a cascaded one-stage detectors – Fig. 1.2), multi-stage and

one-stage detectors address imbalance differently: while almost all existing

R-CNN variants (e.g. Faster R-CNN [19], Mask R-CNN [35], Cascade R-

CNN [20], Dynamic R-CNN [36] etc.) employ additional sampling stages in all

stages followed by a standard cross entropy loss; one-stage detectors generally

relies on Focal Loss [18] and discard sampling. As a result, a single method

to train all visual detectors and achieve SOTA performance is missing in the

literature.
1 As we will see in Chapter 3, sampling in multi-stage detectors can also be formulated as part of the loss

function.
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1.2 Scope of the Thesis

Based on the observations mentioned in Section 1.1, this thesis has two overarching

aims:

• Aim 1. Identifying imbalance problems in visual detection,

• Aim 2. Addressing imbalance problems by loss functions based on perfor-

mance measures.

Following sections presents an overview of our research under the scope of each aim.

1.2.1 Identifying Imbalance Problems in Visual Detection

Having motivated from the gap in the literature, we first define an imbalance problem:

Definition 1. An imbalance problem with respect to an input property occurs when

the distribution regarding that property affects the performance. When not addressed,

an imbalance problem has adverse effects on the final detection performance.

To illustrate, the most commonly known imbalance problem in object detection is the

positive-negative (a.k.a. foreground-background) imbalance which manifests itself in

the extreme inequality between the number of positive examples versus the number

of negatives. In a given image, while there are typically a few positive examples, one

can extract millions of negative examples. If not addressed, this imbalance greatly

impairs detection accuracy. Besides, due to the multi-task nature of visual detectors

and the data including objects in different scales, poses etc., different imbalance prob-

lems affect the performance of visual detectors besides positive-negative imbalance.

Considering these peculiarities of visual detection, in Chapter 3, we present a compre-

hensive review of the imbalance problems in object detection, a representative task

among visual detection tasks, including a detailed discussion on the solutions and

open issues for each problem. In our review, we identify eight different imbalance
2We assume that in both stages, vanilla Faster R-CNN, Mask R-CNN and Mask Scoring R-CNN employ L1

Loss with no hyper-parameter following recent practice. However, Dynamic R-CNN and Libra R-CNN propose

their own regression losses, hence we followed original papers.
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Table 1.1: Number of hyper-parameters in the loss functions of the state-of-the-art

(SOTA) one-stage and two-stage methods. The method with the least number of

hyper-parameter is AP Loss, which optimises Average Precision Loss, and it has 3

hyper-parameters since AP Loss and Smooth L1 are each with 1 hyper-parameter,

and they are combined with a single balancing scalar (λkt in Eq .1.1). As for two-

stage methods, the most simple-to-tune method is the vanilla Faster R-CNN with 3

λkt s and 4 additional hyper-parameters to define the number of positives and negatives

to be sampled, hence 7 in total2. Overall, while the methods in the table requires

∼ 7.4 hyper-parameters to be tuned on average, our aLRP Loss and RS Loss have

significantly less number of hyper-parameters to train both types of architectures.

Type Method Number of Hyper-parameters

One-stage Methods

AP Loss [37] 3

Retina Net [18] 4

ATSS [38] 5

FreeAnchor [39] 8

Center Net [40] 10

aLRP Loss (Ours) 1

RS Loss (Ours) 1

Two-stage Methods

Faster R-CNN [19] 7

Mask R-CNN [35] 8

Mask Scoring R-CNN [41] 9

Dynamic R-CNN [36] 10

Libra R-CNN [32] 11

aLRP Loss (Ours) 3

RS Loss (Ours) 3
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Figure 1.3: An illustration depicting the effect of correlation on performance mea-

sure, AP and Non-Maximum Suppression (NMS). (top) A larger correlation between

prediction scores and IoUs of the final detections (i.e. possibly after NMS) improves

the performance value, COCO-style AP (AP in short). The correlation has an ef-

fect on especially in larger IoUs and the resulting AP. AP50 and AP75 refer to APs

when the true positives are validated from IoU 0.50 and 0.75 respectively. (down) A

larger correlation between prediction scores and IoUs of the detections before NMS

improves detection quality since the detection with the largest confidence score sur-

vives from the conventional NMS among detections with significant overlap. More

specifically, for the corresponding zebra in the example, while the white detection

with a better localisation quality survives from NMS when the scores and IoUs pos-

itively correlate; the surviving detection is the red one with poor localisation when

they negatively correlate. Note that the table in top also depicts that the conventional

loss formulation following Eq. 1.1 ignores correlation.
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problems and group these problems in a taxonomy with four main types: class imbal-

ance, scale imbalance, spatial imbalance and objective imbalance (Table 1.2). Class

imbalance occurs when there is significant inequality among the number of exam-

ples pertaining to different classes. While the classical example of this is the positive-

negative imbalance, there is also imbalance among the positive (foreground) classes.

Scale imbalance occurs when the objects have various scales and different numbers

of examples pertaining to different scales. Spatial imbalance refers to a set of fac-

tors related to spatial properties of the bounding boxes such as regression penalty,

location and IoU. Finally, objective imbalance occurs when there are multiple loss

functions to minimize, as is often the case in object detection (e.g. classification and

box regression losses).

With the aim to enable further analysis of imbalance problems in visual detection,

in Chapter 4, we propose a “Bounding Box Generator” that can generate a random

bounding box given an input bounding box and minimum desired IoU value. Con-

sidering that using bounding box-based proposals is quite common in visual detector

tasks [18, 42, 43], our Bounding Box Generator is a basis for the generation of dif-

ferent proposal sets with different distributional characteristics. To illustrate this, we

design a positive region-of-interest generator to train the second stage of Faster R-

CNN and analyse three different imbalance problems.

1.2.2 Addressing Imbalance Problems by Loss Functions based on Performance

Measures

Our main motivation to alleviate these imbalance problems is to devise loss functions

based on performance measures (e.g. AP), thereby bridging the gap between training

and evaluation objectives. With the following three potential advantages, we motivate

that our idea can address the three drawbacks (D1)-(D3) of the conventional loss

formulation (Eq. 1.1) we identified in Section 1.1:

(A1) As the performance measures (e.g. AP) do not typically have any hyper-parameters

(or even if they have, they have to be fixed for all methods before training for

a fair performance evaluation across methods), the resulting loss function is

9



Table 1.2: Imbalance problems reviewed in this thesis (Chapter 3). We state that

an imbalance problem with respect to an input property occurs when the distribution

regarding that property affects the performance. The first column (“Type”) shows the

major imbalance categories and the second column shows the imbalance problem and

its associated input property concerning the definition of the imbalance problem.

Type Imbalance Problem: Related Input Property

Class
Foreground-Background Class Imbalance: The numbers of propos-

als pertaining to different classes (Section 3.2.1)

Foreground-Foreground Class Imbalance: The numbers of proposals

pertaining to different classes (Section 3.2.2)

Scale
Object/box-level Scale Imbalance (Section 3.3.1):The scales of input

and ground-truth bounding boxes

Feature-level Imbalance (Section 3.3.2): Contribution of the feature

layer from different abstraction levels of the backbone network (i.e.

high and low level)

Spatial

Imbalance in Regression Loss (Section 3.4.1): Contribution of the

individual examples to the regression loss

IoU Distribution Imbalance (Section 3.4.2) :IoU distribution of pos-

itive proposals

Object Location Imbalance (Section 3.4.3): Locations of the objects

throughout the image

Objective Objective Imbalance (Section 3.5): Contribution of different tasks

(i.e. classification, regression) to the overall loss
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expected to be simpler-to-tune (Table 1.1).

(A2) A loss function based on a performance measure can either directly enforce

correlation (as in COCO-style AP in 1.3) or else it can be designed in the de-

sired way as long as the base performance metric considers all performance

aspects of visual detector (i.e. False Positive Rate, False Negative Rate and

Localisation Error).

(A3) The performance measures are inherently robust to class-imbalance due to their

ranking-based error definition, which penalises the negatives only when it is

ranked above a positive. Thus, we expect that the loss functions with a ranking-

based error definition can directly be used by both one-stage and multi-stage

detectors.

With these motivations, in order to optimise a performance metric as a loss function,

we first identify two important challenges:

• Challenge 1. The performance metric which the loss function is to base on

needs to be chosen carefully. For example, as we will present in Section 5,

the common performance metric, AP, does not precisely consider localisation

quality (i.e. instead, AP considers the localisation quality loosely by applying

thresholding on the localisation quality of each detection to validate it as a true

positive.), and hence, optimising only AP to train a visual detector may not be

the best solution.

• Challenge 2. Ranking-based nature of the performance metric yields null or

infinite derivatives, preventing the direct usage of ranking-based loss functions

with stochastic gradient descent using backpropagation.

Addressing Challenge 1. Having examined AP, we first identify that it has significant

drawbacks: (i) AP does not precisely consider all performance aspects of object de-

tectors (i.e. False Positive Rate, False Negative Rate and Localisation Error), (ii) the

resulting AP value is difficult to interpret, and (iii) AP has some practical limitations

which we detail in Chapter 5. To address these drawbacks, we propose Localisation-

Recall-Precision (LRP) Error as a novel performance metric which yields a “com-

plete” (i.e. LRP considers all performance aspects explicitly), an “interpretable” (i.e.
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LRP has a component to present the detection quality of each performance aspect)

and a “unified” (i.e. LRP can evaluate all visual detection tasks) evaluation of visual

detectors. We use LRP and oLRP to evaluate 35 visual detectors from four different

visual detection tasks (object detection, keypoint detection, instance segmentation

and panoptic segmentation).

Addressing Challenge 2. In order to allow our LRP Error to be a basis for our loss

functions, we build upon how Chen et al. [37] optimised AP Loss, the loss form

of the AP, in which they incorporated error-driven update from Perceptron Learning

[44] into backpropagation. Considering that their method is specific for AP Loss, in

Chapter 6, we propose “Identity Update” as a general and simple computation and

optimisation method for ranking-based loss functions. We prove that the ranking-

based loss functions optimised using our Identity Update have provable balance in

terms of gradient magnitudes between positives and negatives.

Our Ranking-based and Balanced Loss Functions. Finally, we propose two novel

loss functions, which are defined based on our LRP Error and optimised using our

Identity Update:

1. In Chapter 7, we present average Localisation-Recall-Precision (aLRP) Loss,

which considers the outputs of both classification and box regression heads to

supervise each head (i.e. classification and box regression), thereby enforcing

correlation of these heads. In such a way AP Loss ensures∼ 5 AP improvement

over the baseline ranking-based loss baseline, AP Loss [37], on Retina Net [18].

2. In Chapter 8, we propose Rank & Sort (RS) Loss, improving upon aLRP Loss:

(i) With its novel sorting objective, RS Loss directly aims to supervise the vi-

sual detector to sort the positive examples with respect to localisation qualities,

which is consistent with NMS and computation of the performance measures.

(ii) RS Loss does not need longer training iterations unlike aLRP Loss and AP

Loss. We apply RS Loss on a diverse set of seven visual detectors (both multi-

stage and one-stage) only by tuning the learning rate, significantly simplify the

training pipeline and consistently outperform both conventional and ranking

baseline loss functions.
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We note that as hypothesized, both of our loss functions (i) have only one hyper-

parameter to be tuned for one-stage detectors, and three hyper-parameters for multi-

stage detectors, which is significantly less than common methods (Table 1.1), (ii)

enforces correlation on all heads, and (iii) can train both one-stage and multi-stage

visual detectors following the same training pipeline.

1.3 Contributions and Novelties

Our contributions in this thesis are as follows:

• We propose a taxonomy of imbalance problems in object detection and provide

a critical literature review of their solutions following our taxonomy.

• We propose “Bounding Box Generator” as a tool for analysing different imbal-

ance problems. Using Bounding Box Generator, we devise a Positive Region-

of-Interest Generator that generates bounding boxes with different class, IoU

and spatial distributions to analyse imbalance problems in the second stage of

Faster R-CNN.

• We thoroughly analyse Average Precision (AP) and Panoptic Quality (PQ) per-

formance measures, and then propose “Localisation-Precision-Recall (LRP)

Error” performance metric to evaluate all visual detection tasks. We show that

LRP Error addresses the limitations of AP and PQ. Moreover, LRP Error is

an upper bound for the error versions of precision, recall and PQ. Therefore,

minimizing LRP is guaranteed to minimize the other measures.

• While LRP Error can directly be used when the confidence scores are not in-

cluded in the output (e.g. panoptic segmentation), for evaluating the outputs

with confidence scores (e.g. object detection), we propose “Optimal LRP”

(oLRP).

• We show that the performances of visual object detectors are sensitive to thresh-

olding, and based on oLRP, we propose “LRP-Optimal Threshold” to reduce

the number of detections in an optimal manner.
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• We propose “Identity Update” to compute and optimise ranking-based loss

functions. Identity Update not only provides a simple and general framework to

incorporate such loss functions into backpropagation but also ensures provable

balance in terms of the magnitude of the total gradients of positive and negative

examples.

• We propose “average Localisation-Recall-Precision (aLRP) Loss”, a unified,

bounded, balanced and ranking-based loss function for both classification and

localisation tasks in object detection. aLRP Loss has a single hyper-parameter

to be tuned, hence it is easy-to-tune, can be used with one-stage and multi-

stage methods easily. Replacing our ranking-based baseline, AP Loss, com-

bined with Smooth L1 Loss by aLRP Loss for training RetinaNet improves the

performance by ∼ 5AP.

• We propose “Rank & Sort (RS) Loss”, as a ranking-based loss function to train

deep object detection and instance segmentation methods. RS Loss supervises

the classifier, a sub-network of these methods, to rank each positive above all

negatives as well as to sort positives among themselves with respect to (wrt.)

their continuous localisation qualities. With RS Loss, we significantly simplify

training, train seven diverse visual detectors only by tuning the learning rate

and consistently improve performance: e.g. RS Loss improves Faster R-CNN

by ∼ 3 box AP and Mask R-CNN by ∼ 2 mask AP.

1.3.1 Publications

These contributions are published in the following papers:

• Kemal Oksuz, Baris Can Cam, Emre Akbas* and Sinan Kalkan∗, “Rank & Sort

Loss for Object Detection and Instance Segmentation”, under review.

• Kemal Oksuz, Baris Can Cam, Sinan Kalkan∗ and Emre Akbas∗, “One Met-

ric to Measure them All: Localisation Recall Precision (LRP) for Evaluating

Visual Detection Tasks”, under review.

∗ Equal contribution for senior authorship.
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• Kemal Oksuz, Baris Can Cam, Emre Akbas∗ and Sinan Kalkan∗, “A Ranking-

based, Balanced Loss Function Unifying Classification and Localisation in

Object Detection”, Advances on Neural Information and Processing Systems

(NeurIPS), 2020.

• Kemal Oksuz, Baris Can Cam, Emre Akbas∗ and Sinan Kalkan∗, “Generating

Positive Bounding Boxes for Balanced Training of Object Detectors”, IEEE

Winter Conference on Applications of Computer Vision (WACV), 2020.

• Kemal Oksuz, Baris Can Cam, Sinan Kalkan∗ and Emre Akbas∗, “Imbalance

Problems in Object Detection: A Review”, Transactions on Pattern Analysis

and Machine Intelligence (TPAMI), 2020.

• Kemal Oksuz, Baris Can Cam, Emre Akbas∗ and Sinan Kalkan∗, “Localization

Recall Precision (LRP): A New Performance Metric for Object Detection”, Eu-

ropean Conference on Computer Vision (ECCV), 2018.

1.3.2 Software Contributions

Under the scope of this thesis, the following software have been released as open

source:

• In order to keep our review up to date, we provide an accompanying web-

page which catalogs papers addressing imbalance problems, according to our

problem-based taxonomy available at https://github.com/kemaloksuz/

ObjectDetectionImbalance.

• We provide the code for our Bounding Box Generator and the positive RoI Gen-

erator at https://github.com/kemaloksuz/BoundingBoxGenerator.

• We incorporated our LRP Error into the official evaluation codes of the com-

mon datasets, COCO [13], LVIS [45], Panoptic COCO [46] at https://

github.com/kemaloksuz/LRP-Error.

• We release the code for our aLRP Loss at https://github.com/kemaloksuz/

aLRPLoss, and the code of our RS Loss will be released after its ongoing re-

view process is completed.
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1.4 The Outline of the Thesis

This thesis is organized as follows: Chapter 2 provides the frequently used nota-

tion and terms throughout the thesis. Chapter 3 provides our review on the imbal-

ance problems in object detection and Chapter 4 introduces Bounding Box Generator

as an analysis tool for imbalance. Then, the next two chapters provide necessary

tools to define and optimise our ranking-based loss functions: Chapter 5 introduces

Localisation-Recall-Performance Error as our novel performance metric and Chap-

ter 6 presents Identity Update to compute and optimise ranking-based loss functions.

Subsequently, Chapters 7 and 8 introduce our aLRP Loss and RS Loss respectively,

and finally Chapter 9 concludes this thesis.
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CHAPTER 2

FREQUENTLY USED NOTATIONS AND DEFINITIONS

This chapter presents the notation used throughout this chapter and the definitions of

the frequently used terms.

2.1 Frequently Used Notations

Below is an alphabetically sorted list of frequently used notations throughout the

paper.

• APC, COCO-Style AP.

• APτ , AP when the TPs are validated from the localisation quality, lq(·, ·),

threshold of τ .

• ARC
r , Average Recall where r is the number of top-scoring detections to include

in the computation of AR.

• b ∈ R|P |×4, Ground truth BBs. We assume one-to-one correspondence with

the predictions, b̂.

• b̂ ∈ R|P |×4, Raw box regression prediction of VD. b̂i ∈ R4 represents the ith

box regression head raw prediction originating from ith proposal. With IoU-

based performance measures and loss functions, we assume that b̂i represents a

BB.

• B = [x1, y1, x2, y2], a bounding box.

• C, a set of integers to represent class labels in a dataset.
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• d, A detection such that d ∈ D.

• dg, A TP detection that matches ground truth g.

• D, A set of detections.

• g, A ground truth such that g ∈ G.

• G, A set of ground truths.

• H(x), Smoothed unit-step function (Eq. 6.5).

• |K|, the number of classes predicted by the classification head. |K| = |C| with

binary sigmoid classifiers and |K| = |C|+ 1 with softmax classifiers due to the

additional background class.

• `(i), the loss value computed on example i for a ranking-based loss L.

• `(i)∗, the target loss value on example i.

• L, a loss function.

• Lij , the primary term concerning examples i and j is the loss originating from

i and distributed over j via a probability mass function p(j|i).

• L∗ij , the target primary term for the primary term Lij .

• lq(·, ·), A localisation quality function. (e.g. IoU(·, ·)).

• LRP, LRP value.

• LRPLoc, localisation error component of LRP.

• LRPFN, FN error component of LRP.

• LRPFP, FP error component of LRP.

• NFN, Number of False Negatives.

• NFP, Number of False Positives.

• NTP, Number of True Positives.
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• NFP(i), Number of False Positives for the set thresholded from ith example.

In particular, this term is used in the derivations in ranking-based losses, and

indicates the number of negatives with logits larger than ŝi.

• N , the set of negative examples identified based on the assignments of the

proposals (i.e. anchors/points/RoIs).

• oLRP, oLRP value.

• oLRPLoc, localisation error component of oLRP.

• oLRPFN, FN error component of oLRP.

• oLRPFP, FP error component of oLRP.

• |P |, number of proposals (e.g. anchor/RoI/point).

• p(j|i), the probability mass function to distribute the loss on i over j.

• P , the set of positive examples identified based on the assignments of the pro-

posals (i.e. anchors/points/RoIs).

• Pi, Pyramidal feature layer corresponding to ith backbone feature layer.

• p̂ ∈ R|P |×|K|, predicted classification confidence scores (i.e. logits) from a VD

where |P | is the number of proposals and |K| is the number of classes predicted

by the classifier. Note that pij is obtained by applying element-wise sigmoid or

proposal-wise softmax operation depending on the classifier.

• rank+(i), the ranking position of the ith example among positives.

• rank(i), the ranking position of the ith sample among all samples.

• s ∈ {−1, 0, 1}|P |×|K|, ground truth class labels. We assume one-to-one cor-

respondence with ŝ. Examples with −1, 0, 1 represent ignored examples, neg-

ative (background) examples and positive (foreground) examples respectively.

We represent the elements of s similar to ŝ (Note that different from this context

s represents the confidence score of a detection, see its explanation for further

details).
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• ŝ ∈ R|P |×|K|, Raw classification predictions (i.e. logits) from a VD where |P |
is the number of proposals and |K| is the number of classes predicted by the

classifier. We use two different element representations on ŝ: (i) ŝij assumes ŝ

is 2D (matrix) and represents the logit of ith proposal (i.e. anchor/RoI) corre-

sponding to jth class, and (ii) ŝi assumes ŝ is 1D (vector) and represents the ith

among outputs.

• s∗, LRP-Optimal confidence score.

• S , A set of confidence scores.

• xij , the difference transform (i.e. ŝj − ŝi) between the logit of ith prediction

(ŝi) and the logit of jth prediction (ŝj).

• ∆xij , the update in difference transforms xij .

• τ , TP validation threshold in terms of localisation quality.

While this list of notation is consistently adopted throughout the text, some of the

chapter-specific notation (the notation which is used only by a single chapter), which

are used locally, is not included in this list for clarity. Furthermore, these local sym-

bols are overloaded in rare cases and kept intentionally as they are in order to preserve

some equations as they are. To illustrate, Z is used to denote both the normalization

constants of LRP Error (Eq. 5.2) and the generic ranking-based loss function (Eq.

6.17). In that case Z is defined in both of the chapters and used as it is defined

throughout that chapter.

2.2 Frequently Used Terms

Below is a list of frequently used terms in this thesis:

Bounding Box: A rectangle. Formally, a bounding box (BB), denoted by B, is

generally represented by [x1, y1, x2, y2] with (x1, y1) denoting the top-left corner and

(x2, y2) the bottom-right corner, with the constraints x2 > x1 and y2 > y1. Accord-

ingly, the area of a BB is:

A(B) = (x2 − x1)× (y2 − y1). (2.1)
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Anchor: The set of pre-defined bounding boxes on which the RPN in multi-stage

detectors and detection network in one-stage detectors are applied.

Region of Interest (RoI): The set of bounding boxes generated by a proposal mecha-

nism such as RPN on which the detection network is applied on multi-stage detectors.

Proposal: Any type of object hypotheses, e.g. anchor, RoI, a point/pixel.

Feature Extraction Network: This is the part of the detection pipeline from the

input image until the detection network (e.g. Fig. 1.2(a)).

Backbone: This is the part of the feature extraction network until pyramidal network

(e.g. FPN [29]), if exists; else it corresponds to the feature extraction network. An

example is ResNet [47].

Classification Head/Classification Network/Classifier: This is the part of the de-

tection pipeline from the extracted features to the classification prediction.

Box Regression Head/Box Regression Network/Regression Network/Regressor:

This is the part of the detection pipeline from the extracted features to the regression

output.

Detection Network/Detector: It is the part of the detection pipeline including possi-

ble shared layers among heads followed by visual-detection task specific heads/sub-

networks (e.g. classification and box regression heads for object detection – e.g. Fig.

1.2(b)).

Region Proposal Network (RPN): As a single class object detector (i.e. only in-

cludes classification and box regression heads) to determine the objectness score of

the anchors, RPN is the first detection network of multi-stage networks. More partic-

ularly, it is the part of the multi-stage detection pipeline from the multi-scale feature

maps until the RoIs.

Intersection Over Union (IoU): For two polygons Pg and Pd, Intersection over

Union (IoU) [48, 49], IoU(Pg, Pd) is defined as :

IoU(Pg, Pd) =
A(Pg ∩ Pd)
A(Pg ∪ Pd)

=
A(Pg ∩ Pd)

A(Pg) + A(Pd)− A(Pg ∩ Pd)
, (2.2)

where A(P ) is the area of the polygon P (i.e. number of pixels delimited by P ).
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These polygons are represented by bounding boxes for object detection, and by masks

for segmentation tasks (e.g. instance segmentation, panoptic segmentation). IoU ∈
[0, 1] and it is used to evaluate the localisation quality of a detection bounding box/-

mask with respect to its ground truth box/mask.

Object Keypoint Similarity (OKS): Given target and estimated keypoint sets, Kg

and Kd respectively, with kig ∈ Kg and kid ∈ Kd being the ith keypoint of the object

represented by a 2D coordinate on the image, Object Keypoint Similarity (OKS) [13]

between kig and kid, denoted by OKS(kig, k
i
d), is

OKS(kig, k
i
d) =

exp(−||kig − kid||2)

2(Sκi)2
, (2.3)

where || · − · || is Euclidean distance, κi is the constant corresponding to ith keypoint

to control falloff, and S is the object scale (e.g. the area of the ground truth bounding

box divided by the total image area). Then, OKS betweenKg andKd, OKS(Kg, Kd),

is simply the average of OKS(kig, k
i
d) over single keypoints annotated in the dataset:

OKS(Kg, Kd) =
1

|Kg|
∑
i∈|Kg |

OKS(kig, k
i
d). (2.4)

Similar to IoU(·, ·); OKS(·, ·) ∈ [0, 1] and a larger OKS(·, ·) implies better localisa-

tion quality.

Under-represented Class: The class which has less samples in a dataset or mini

batch during training in the context of class imbalance.

Over-represented Class: The class which has more samples in a dataset or mini

batch during training in the context of class imbalance.

Backbone Features: The set of features obtained during the application of the back-

bone network.

Pyramidal Features/Feature Pyramid: The set of features obtained by applying

some transformations to the backbone features (see “Feature maps obtained in differ-

ent scales” in Fig. 1.2(a)).

Hard Prediction: A type of visual detector output which identifies each object with

(i) a set of identifiers to locate an object (e.g. bounding box, mask, keypoints), and

(ii) its class label.
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Soft Prediction: A type of visual detector output which identifies each object with

(i) a set of identifiers to locate an object (e.g. bounding box, mask, keypoints), (ii) its

class label and (iii) the confidence score of the prediction.

Keypoint Set: A set of coordinates to represent an object on the image such that each

element is a two tuple (xi, yi) identifying a keypoint of an object.

Segmentation Mask: A set of pixels presenting which pixels belong to a particular

object.
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CHAPTER 3

IMBALANCE PROBLEMS IN OBJECT DETECTION

In this chapter, we present a review of the imbalance problems in object detection

based on our work,

• Kemal Oksuz, Baris Can Cam, Sinan Kalkan* and Emre Akbas∗, “Imbalance

Problems in Object Detection: A Review”, Transactions on Pattern Analysis

and Machine Intelligence (TPAMI), 2020.

We only make some minor changes to fit the text appropriately in the context of this

thesis (e.g. notation) and some minor corrections.

The Scope of the Review. Since imbalance problems in general have a large scope

in machine learning, computer vision and pattern recognition, we limit our focus to

imbalance problems in object detection and since the current state-of-the-art is shaped

by deep learning based approaches, the problems and approaches that we discuss

here are related to deep object detectors. Although we restrict our attention to object

detection in still images, we provide brief discussions on similarities and differences

of imbalance problems in other domains. We believe that these discussions would

provide insights on future research directions for object detection researchers.

Our main is to present and discuss imbalance problems in object detection compre-

hensively. In order to do that,

1. We identify and define imbalance problems and propose a taxonomy for study-

ing the problems and their solutions.

∗ Equal contribution for senior authorship.
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2. We present a critical literature review for the existing studies with a motiva-

tion to unify them in a systematic manner. The general outline of our review

includes a definition of the problems, a summary of the main approaches, an

in-depth coverage of the specific solutions, and comparative summaries of the

solutions.

3. We present and discuss open issues at the problem-level and in general.

4. We also reserved a chapter (in Appendix A) for imbalance problems found in

domains other than object detection. This section is generated with meticulous

examination of methods considering their adaptability to the object detection

pipeline.

5. Finally, we provide an accompanying webpage1 as a living repository of pa-

pers addressing imbalance problems, organized based on our problem-based

taxonomy. This webpage has been continuously updated with new studies.

Comparison with Previous Reviews. Recent object detection surveys [50, 51, 52]

aim to present advances in deep learning based generic object detection. To this

end, these surveys propose a taxonomy for object detection methods, and present a

detailed analysis of some cornerstone methods that have had high impact. They also

provide discussions on popular datasets and evaluation metrics. From the imbalance

point of view, these surveys only consider the class imbalance problem with a limited

provision. Additionally, Zou et al. [51] provide a review for methods that handle

scale imbalance. Unlike these surveys, here we focus on a classification of imbalance

problems related to object detection and present a comprehensive review of methods

that handle these imbalance problems.

There are also surveys on category specific object detection (e.g. pedestrian detection,

vehicle detection, face detection) [53, 54, 55, 56]. Although Zehang Sun et al. [53]

and Dollar et al. [54] cover the methods proposed before the current deep learning

era, they are beneficial from the imbalance point of view since they present a compre-

hensive analysis of feature extraction methods that handle scale imbalance. Zafeiriou

et al. [55] and Yin et al. [57] propose comparative analyses of non-deep and deep

1 https://github.com/kemaloksuz/ObjectDetectionImbalance
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methods. Litjens et al. [58] discuss applications of various deep neural network based

methods i.e. classification, detection, segmentation to medical image analysis. They

present challenges with their possible solutions which include a limited exploration

of the class imbalance problem. These category specific object detector reviews fo-

cus on a single class and do not consider the imbalance problems in a comprehensive

manner from the generic object detection perspective.

Another set of relevant work includes the studies specifically for imbalance problems

in machine learning [59, 60, 61, 62]. These studies are limited to the foreground

class imbalance problem in our context (i.e. there is no background class). Gen-

erally, they cover dataset-level methods such as undersampling and oversampling,

and algorithm-level methods including feature selection, kernel modifications and

weighted approaches. We identify three main differences of our work compared to

such studies. Firstly, the main scope of such work is the classification problem, which

is still relevant for object detection; however, object detection also has a “search”

aspect, in addition to the recognition aspect, which brings in the background (i.e.

negative) class into the picture. Secondly, except Johnson et al. [62], they consider

machine learning approaches in general without any special focus on deep learning

based methods. Finally, and more importantly, these works only consider foreground

class imbalance problem, which is only one of eight different imbalance problems

that we present and discuss here (Table 1.2).

A Guide to Reading This Chapter/Review. This chapter is organized as follows.

Section 3.1 presents our taxonomy of imbalance problems. Sections 3.2-3.5 then

cover each imbalance problem in detail, with a critical review of the proposed solu-

tions and include open issues for each imbalance problem. Each section dedicated to

a specific imbalance problem is designed to be self-readable, containing definitions

and a review of the proposed methods. Section 3.6 discusses open issues that are

relevant to all imbalance problems. Finally, Section 3.7 concludes this chapter. In

order to provide a more general perspective, in Appendix A, we present the solutions

addressing imbalance in other but closely related domains.

For readers, familiar with SOTA methods in object detection, this chapter is self-

contained and thus is readable without other chapters of this thesis with the exception
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that you can refer to Chapter 2 and the list of abbreviations provided in page xxxix

for notations, definitions and abbreviations. For readers who lack a background in

state-of-the-art object detection, we recommend starting with Chapter 1, in which

we provide a basic background and motivation for visual detection and imbalance

problems, and if this brief background is not sufficient, we refer the reader to the

more comprehensive object detection surveys [50, 51, 52].

3.1 A Taxonomy of the Imbalance Problems and their Solutions in Object De-

tection

In Chapter 1, we defined the problem of imbalance as the occurrence of a distri-

butional bias regarding an input property in the object detection training pipeline.

Several different types of such imbalance can be observed at various stages of the

common object detection pipeline (Fig. 3.2). To study these problems in a systematic

manner, we propose a taxonomy based on the related input property.

We identify eight different imbalance problems, which we group into four main cate-

gories: class imbalance, scale imbalance, spatial imbalance and objective imbalance.

Table 1.2 presents the complete taxonomy along with a brief definition for each prob-

lem. In Fig. 3.1, we present the same taxonomy along with a list of proposed solutions

for each problem. Finally, in Fig. 3.2, we illustrate a generic object detection pipeline

where each phase is annotated with their typically observed imbalance problems. In

the following, we elaborate on the brief definitions provided earlier, and illustrate the

typical phases where each imbalance problem occurs.

Class imbalance (Section 3.2; blue branch in Fig. 3.1) occurs when a certain class is

over-represented. This problem can manifest itself as either “foreground-background

imbalance,” where the background instances significantly outnumber the positive

ones; or “foreground-foreground imbalance,” where typically a small fraction of classes

dominate the dataset (as observed from the long-tail distribution in Fig. 3.5). The

class imbalance is usually handled at the “sampling” stage in the object detection

pipeline (Fig. 3.2).

Scale imbalance (Section 3.3; green branch in Fig. 3.1) is observed when object
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Methods for

Imbalance

Problems

Spatial

Imbalance

(Section 3.4)

Imbalance

in Regres-

sion Task

(Section 3.4.1)

IoU

Distribution

Imbalance

(Section 3.4.2)

Object

Location

Imbalance

(Section 3.4.3)

Scale Im-

balance

(Section 3.3)

Object/box-level

Imbalance

(Section 3.3.1)

Feature-level

Imbalance

(Section 3.3.2)

Objective

Imbalance

(Section 3.5)

Class Im-

balance

(Section 3.2)

Fg-Bg Class

Imbalance

(Section 3.2.1)

Fg-Fg Class

Imbalance

(Section 3.2.2)

•Task Weighting
•CARL [33]
•Guided Loss [63]

•1.Hard Sampling Methods
•A.Random Sampling
•B.Hard Example Mining

–Bootstraping [64]
–SSD [24]
–OHEM [27]
– IoU-based Sampling [32]

•C.Limit Search Space
–Two-stage Object Detectors
– IoU-lower Bound [22]
–Objectness Prior [65]
–Negative Anchor Filtering [66]
–Objectness Module [67]

•2.Soft Sampling Methods
•Focal Loss [18]
•GHM [68]
•Prime Sample Attention [33]

•3.Sampling-Free Methods
•Residual Objectness [69]
•No Sampling Heuristics [63]
•AP Loss [37]
•DR Loss [70]

•4.Generative Methods
•Adversarial Faster-RCNN [71]
•Task Aware Data Synthesis [72]
•PSIS [73]
•pRoI Generator [74]

•See generative methods for
fg-bg class imb.
•Fine-tuning Long Tail

Distribution for Obj.Det. [28]
•OFB Sampling [74]

•Guided Anchoring [75]
•Free Anchor [39]

•1.Methods Predicting from the Feature
Hierarchy of Backbone Features
•Scale-dependent Pooling [76]
•SSD [24]
•Multi Scale CNN [77]
•Scale Aware Fast R-CNN [78]

•2.Methods Based on Feature Pyramids
•FPN [29]
•See feature-level imbalance methods

•3.Methods Based on Image Pyramids
•SNIP [30]
•SNIPER [31]

•4.Methods Combining Image and Feature
Pyramids
•Efficient Featurized Image Pyramids [79]
•Enriched Feature Guided Refinement

Network [67]
•Super Resolution for Small Objects [80]
•Scale Aware Trident Network [81]

•1.Methods Using Pyramidal Features
as a Basis
•PANet [82]
•Libra FPN [32]

•2.Methods Using Backbone Features as
a Basis
•STDN [83]
•Parallel-FPN [84]
•Deep Feature Pyramid Reconf. [85]
•Zoom Out-and-In [86]
•Multi-level FPN [87]
•NAS-FPN [88]
•Auto-FPN [89]

•1.Lp norm based
•Smooth L1 [22]
•Balanced L1 [32]
•KL Loss [90]
•GHM [68]

•2.IoU based
• IoU Loss [91]
•Bounded IoU Loss [92]
•GIoU Loss [93]
•Distance IoU Loss [94]
•Complete IoU Loss [94]

•Cascade R-CNN [20]
•HSD [95]
• IoU-uniform R-CNN [96]
•pRoI Generator [74]

Figure 3.1: Problem based categorization of the methods used for imbalance prob-

lems. A work may appear at multiple locations if it addresses multiple problems.
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Figure 3.2: (a) The common training pipeline of a generic detection network. The

pipeline has 3 phases (i.e. feature extraction, detection and BB matching, labeling

and sampling) represented by different background colors. (b) Illustration of an ex-

ample imbalance problem from each category for object detection through the training

pipeline. Background colors specify at which phase an imbalance problem occurs.

instances have various scales and different number of examples pertaining to differ-

ent scales. This problem is a natural outcome of the fact that objects have different

dimensions in nature. Scale also could cause imbalance at the feature-level (typically

handled in the “feature extraction” phase in Fig. 3.2), where contribution from dif-

ferent abstraction layers (i.e. high and low levels) are not balanced. Scale imbalance

problem suggests that a single scale of visual processing is not sufficient for detecting

objects at different scales. However, as we will see in Section 3.3, proposed methods

fall short in addressing scale imbalance, especially for small objects, even when small

objects are surprisingly abundant in a dataset.

Spatial imbalance (Section 3.4; orange branch in Fig. 3.1) refers to a set of factors

related to spatial properties of the bounding boxes. Owing to these spatial properties,

we identify three sub-types of spatial imbalance: (i) “imbalance in regression loss” is

about the contributions of individual examples to the regression loss and naturally the

problem is related to loss function design (ii) “IoU distribution imbalance” is related

to the biases in the distribution of IoUs (among ground-truth boxes vs. anchors or
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detected boxes), and typically observed at the bounding-box matching and labeling

phase in the object detection pipeline (Fig. 3.2) (iii) “object location imbalance” is

about the location distribution of object instances in an image, which is related to both

the design of the anchors and the sampled subset to train the detection network.

Finally, objective imbalance (Section 3.5; purple branch in Fig. 3.1) occurs when

there are multiple objectives (loss functions) to minimize (each for a specific task, e.g.

classification and box-regression). Since different objectives might be incompatible

in terms of their ranges as well as their optimum solutions, it is essential to develop a

balanced strategy that can find a solution acceptable in terms of all objectives.

Fig. 3.1 gives an overall picture of the attention that different types of imbalance

problems have received from the research community. For example, while there are

numerous methods devised for the foreground-background class imbalance problem,

the objective imbalance and object location imbalance problems are examples of the

problems that received relatively little attention. However, recently there have been a

rapidly increasing interest (Fig. 3.3) in these imbalance problems as well, which ne-

cessitates a structured view and perspective on the problems as well as the solutions,

as proposed in this review.

Note that some imbalance problems are directly owing to the data whereas some are

the by-products of the specific methods used. For example, class imbalance, object

location imbalance etc. are the natural outcomes of the distribution of classes in

the real world. On the other hand, objective imbalance, feature-level imbalance and

imbalance in regression loss are owing to the selected methods and possibly avoidable

with a different set of methods; for example, it is possible to avoid IoU distribution

imbalance altogether by following a bottom-up approach where, typically, IoU is not

a labeling criterion (e.g. [26, 97]).

3.2 Imbalance 1: Class Imbalance

Class imbalance is observed when a class is over-represented, having more exam-

ples than others in the dataset. This can occur in two different ways from the object

detection perspective: foreground-background imbalance and foreground-foreground
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Figure 3.4: Illustration of the class imbalance problems. The numbers of RetinaNet

[18] anchors on COCO [13] are plotted for foreground-background (a), and fore-

ground classes (b). The values are normalized with the total number of images in the

dataset. The figures depict severe imbalance towards some classes.

imbalance.

Fig. 3.4 illustrates the presence of class imbalance. To generate the figure, we ap-

ply the default set of anchors from RetinaNet [18] on the COCO dataset2 [13] and

calculated the frequencies for the cases where the IoU of an anchor with a ground

truth bounding box exceeds 0.50 and where it is less than 0.40 (i.e. it is a background

box) following the labeling rule of RetinaNet [18]. When an anchor overlaps with

a foreground class (with IoU > 0.50), we kept a count for each class separately and

normalized the resulting frequencies with the number of images in the dataset.
2 Throughout the text, unless otherwise specified, “COCO”, “PASCAL”, and “Open Images” respectively

correspond to the Pascal VOC 2012 trainval [48], COCO 2017 train [13], Open Images v5 training (subset
with bounding boxes) [98] and Objects365 train [99] dataset partitions. And, when unspecified, the backbone
is ResNet-50 [47].
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These two types of class imbalance have different characteristics and have been ad-

dressed using different types of solutions. Therefore, in the following, we will cover

them separately. However, some solutions (e.g. generative modeling) could be em-

ployed for both problem types.

3.2.1 Foreground-Background (a.k.a. Positive-Negative) Class Imbalance

Definition. In foreground-background class imbalance, the over-represented and under-

represented classes are background and foreground classes respectively. This type of

problem is inevitable because most bounding boxes are labeled as background (i.e.

negative) class by the bounding box matching and labeling module as illustrated in

Fig. 3.4(a). Foreground-background imbalance problem occurs during training and it

does not depend on the number of examples per class in the dataset since they do not

include any annotation on background.

Solutions. We can group the solutions for the foreground-background class imbalance

into four: (i) hard sampling methods, (ii) soft sampling methods, (iii) sampling-free

methods and (iv) generative methods. Each set of methods are explained in detail in

the subsections below.

In sampling methods, the contribution (wij) of the prediction of the network on the

proposal i for class j to the loss function is adjusted as follows:

wijCE(ŝij, sij), (3.1)

where ŝij is the classification network prediction of ith proposal (e.g. anchor/RoI)

corresponding to jth class and CE() is the cross-entropy loss. Hard and soft sampling

approaches differ on the possible values of wi. For the hard sampling approaches,

wij ∈ {0, 1}, thus a prediction is either selected or discarded. For soft sampling

approaches, wij ∈ [0, 1], i.e. the contribution of a sample is adjusted with a weight

and each prediction is somehow included in training.
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3.2.1.1 Hard Sampling Methods

Hard sampling is a commonly-used method for addressing imbalance in object detec-

tion. It restricts wij to be binary; i.e., 0 or 1. In other words, it addresses imbalance

by selecting a subset of positive and negative examples (with desired quantities) from

a given set of labeled BBs. This selection is performed using heuristic methods and

the non-selected examples are ignored for the current iteration. Therefore, each sam-

pled example contributes equally to the loss (i.e. wij = 1 for all classes j of the

selected example) and the non-selected predictions (wij = 0 for all classes j of the

non-selected example) have no contribution to the training for the current iteration.

See Table 3.1 for a summary of the main approaches.

A straightforward hard-sampling method is random sampling. Despite its simplicity,

it is employed in R-CNN family of detectors [19, 21] where, for training RPN, 128

positive examples are sampled uniformly at random (out of all positive examples) and

128 negative anchors are sampled in a similar fashion; and 16 positive examples and

48 negative RoIs are sampled uniformly from each image in the batch at random from

within their respective sets, for training the detection network [22]3. In any case, if

the number of positive proposals (i.e. anchor or RoI) is less than the desired values,

the mini-batch is padded with randomly sampled negatives. On the other hand, it has

been reported that other sampling strategies may perform better when a property of

an input box such as its loss value or IoU is taken into account [27, 32, 33].

The first set of approaches to consider a property of the sampled examples, rather than

random sampling, is the Hard-example mining methods4. These methods rely on

the hypothesis that training a detector more with hard examples (i.e. examples with

high losses) leads to better performance. The origins of this hypothesis go back to the

bootstrapping idea in the early works on face detection [64, 101, 102], human detec-

tion [103] and object detection [15]. The idea is based on training an initial model

using a subset of negative examples, then using the negative examples on which the

classifier fails (i.e. hard examples), a new classifier is trained. Multiple classifiers are

3 Recent detection frameworks such as mmdetection [100] generally adopt larger numbers: For RPN, 256
positives and negatives are randomly selected, and for R-CNN 128 positives and 384 negatives are selected.

4 In this chapter, we adopt the boldface font whenever we introduce an approach involving a set of different
methods, and the method names themselves are in italic.
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obtained by applying the same procedure iteratively. Currently deep-learning-based

methods also adopt some versions of the hard example mining in order to provide

more useful examples by using the loss values of the examples. The first deep object

detector to use hard examples in the training was Single-Shot Detector [24], which

chooses only the negative examples incurring the highest loss values. A more system-

atic approach considering the loss values of positive and negative samples is proposed

in Online Hard Example Mining (OHEM) [27]. However, OHEM needs additional

memory and causes the training speed to decrease. Considering the efficiency and

memory problems of OHEM, IoU-based sampling [32] was proposed to associate the

hardness of the examples with their IoUs and to use a sampling method again for only

negative examples rather than computing the loss function for the entire set. In the

IoU-based sampling, the IoU interval for the negative samples is divided into bins and

equal number of negative examples are sampled randomly within each bin to promote

the samples with higher IoUs, which are expected to have higher loss values.

To improve mining performance, several studies proposed to limit the search space

in order to make hard examples easy to mine. Two-stage object detectors [19, 23] are

among these methods since they aim to find the most probable bounding boxes (i.e.

RoIs) given anchors, and then choose top RoIs with the highest objectness scores,

to which an additional sampling method is applied. Fast R-CNN [22] sets the lower

bound of IoU of the negative RoIs to 0.1 rather than 0 for promoting hard negatives

and then applies random sampling. Kong et al. [65] proposed a method that learns

objectness priors in an end-to-end setting in order to have a guidance on where to

search for the objects. All of the positive examples having an objectness prior larger

than a threshold are used during training, while the negative examples are selected

such that the desired balance (i.e. 1 : 3) is preserved between positive and negative

classes. Zhang et al. [66] proposed determining the confidence scores of anchors with

the anchor refinement module in a one-stage detection pipeline and again adopted a

threshold to eliminate the easy negative anchors. The authors coined their approach

as negative anchor filtering. Nie et al. [67] used a cascaded-detection scheme in the

SSD pipeline which includes an Objectness Module before each prediction module.

These objectness modules are binary classifiers to filter out the easy anchors.
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3.2.1.2 Soft Sampling Methods

Soft sampling adjusts the contribution (wij) of each prediction by its relative impor-

tance to the training process. This way, unlike hard sampling, no sample is discarded

and the whole dataset is utilized for updating the parameters. See Table 3.1 for a

summary of the main approaches.

A straightforward approach is to use constant coefficients for both the foreground and

background classes. YOLO [25], having less number of anchors compared to other

one-stage methods such as SSD [24] and RetinaNet [18], is a straightforward example

for soft sampling in which the loss values of the predictions labeled as background

are halved (i.e. wij = 0.50).

Focal Loss [18] is the pioneer example that dynamically assigns more weight to the

hard examples as follows:

wij =

(1− p̂ij)γ, if sij = 1

p̂γij, if sij = 0.
(3.2)

where p̂ij is the predicted probability for the ground-truth class (e.g. for RetinaNet

p̂ij = sigmoid(ŝij) [18]). Note that as the predicted ground truth probability ap-

proximates to the ground truth value, Eq. 3.2 assigns a smaller weight to the pre-

diction, thereby suppressing the easier examples. E.g. when a background example

(i.e. sij = 0) is correctly classified (i.e. pij ≈ 0), its contribution to the loss will be

decreased due to small pij . Note that when γ = 0, focal loss degenerates to vanilla

cross entropy loss and Lin et al. [18] showed that γ = 2 ensures a good trade-off

between hard and easy examples for their model and dataset.

Similar to focal loss [18], Gradient Harmonizing Mechanism (GHM) [68] suppresses

gradients originating from easy positives and negatives. The authors first observed

that there are too many samples with small gradient norm, only limited number of

samples with medium gradient norm and significantly large amount of samples with

large gradient norm. Unlike focal loss, GHM is a counting-based approach which

counts the number of examples with similar gradient norm and penalizes the loss of
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a sample if there are many samples with similar gradients as follows:

wi =
1

G(i)/|P |
, (3.3)

where G(i) is the count of samples whose gradient norm is close to the gradient norm

of ith prediction; and |P | is the number of proposals in the batch. In this sense, the

GHM method implicitly assumes that easy examples are those with too many similar

gradients.

Different from other methods, GHM is shown to be useful not only for classification

task but also for the regression task. In addition, since the purpose is to balance the

gradients within each task, this method is also relevant to the “imbalance in regression

loss” discussed in Section 3.4.1.

Different from the latter soft sampling methods, PrIme Sample Attention (PISA) [33]

assigns weights to positive and negative examples based on different criteria. While

the positive ones with higher IoUs are favored, the negatives with larger foreground

classification scores are promoted. More specifically, PISA first ranks the examples

for each class based on their desired property (IoU or classification score) and calcu-

lates a normalized rank, r̄i, for each example i as follows:

r̄i =
Nmax − ri
Nmax

, (3.4)

where ri (0 ≤ ri ≤ Nj − 1) is the rank of the ith example and Nmax is the maximum

number of examples over all classes in the batch. Based on the normalized rank, the

weight of each example is defined as:

wi = ((1− β)r̄i + β)γ, (3.5)

where β adjusts the contribution of the normalized rank and hence, the minimum

sample weight; and γ is the modulating factor again. These parameters are validated

for positives and negatives independently. Note that the balancing strategy in Eq. 3.4

and 3.5 increases the contribution of the samples with high IoUs for positives and

high scores for negatives to the loss.
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3.2.1.3 Sampling-Free Methods

Recently, alternative methods emerged in order to avoid the aforementioned hand-

crafted sampling heuristics and therefore, decrease the number of hyperparameters

during training. For this purpose, Chen et al. [69] added an objectness branch to

the detection network in order to predict Residual Objectness scores. While this new

branch tackles the foreground-background imbalance, the classification branch han-

dles only the positive classes. During inference, classification scores are obtained

by multiplying classification and objectness branch outputs. The authors showed that

such a cascaded pipeline improves the performance. This architecture is trained using

vanilla cross entropy loss.

Another recent approach [63] suggests that if the hyperparameters are set appropri-

ately, not only the detector can be trained without any sampling mechanism but also

the performance can be improved. Accordingly, the authors propose methods for set-

ting the initialization bias, loss weighting (Section 3.5) and class-adaptive threshold,

and in such a way they trained the network using vanilla cross entropy loss achieving

better performance.

Finally, an alternative method is to directly model the final performance measure and

weigh examples based on this model. This approach is adopted by AP Loss [37]

which formulates the classification part of the loss as a ranking task (see also DR

Loss [70] which also uses a ranking method to define a classification loss based on

Hinge Loss) and uses average precision (AP) as the loss function for this task. Since

AP Loss is the work that we are inspired for our aLRP Loss and RS Loss, we discuss

it in detail in Section 6.1.

3.2.1.4 Generative Methods

Unlike sampling-based and sampling-free methods, generative methods address im-

balance by directly producing and injecting artificial samples into the training dataset.

Table 3.2 presents a summary of the main approaches.

One approach is to use generative adversarial networks (GANs). A merit of GANs
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Table 3.2: Comparison of major generative methods addressing class imbalance.

Generative Method Generates

Adversarial-Fast-RCNN

[71]

Occluded and spatially transformed features during RoI pooling

in order to make the examples harder

Task Aware Data Synthesis

[72]

Images with hard examples in a GAN setting in which given

foreground mask is to be placed onto the given image by the

generator.

PSIS [73] Images by switching the instances between existing images con-

sidering the performance of the class during training

pRoI Generator [74] Positive RoIs (i.e. BBs) following desired IoU, spatial and fore-

ground class distributions

is that they adapt themselves to generate harder examples during training since the

loss values of these networks are directly based on the classification accuracy of the

generated examples in the final detection. An example is the Adversarial-Fast-RCNN

model [71], which generates hard examples with occlusion and various deformations.

In this method, the generative manipulation is directly performed at the feature-level,

by taking the fixed size feature maps after RoI standardization layers (i.e. RoI pooling

[22]). For this purpose, they proposed two networks: (i) adversarial spatial dropout

network for occluded feature map generation, and (ii) adversarial spatial transformer

network for deformed (transformed) feature map generation. These two networks

are placed sequentially in the network design in order to provide harder examples

and they are integrated into the conventional object training pipeline in an end-to-end

manner.

Alternatively, artificial images can be produced to augment the dataset [72, 73, 104,

105] by generating composite images in which multiple crops and/or images are

blended. A straightforward approach is to randomly place cropped objects onto im-

ages as done by Dwibedi et al. [104]. However, the produced images may look

unrealistic. This problem is alleviated by determining where to paste and the size

of the pasted region according to the visual context [105]. In a similar vein, the ob-

jects can be swapped between images: Progressive and Selective Instance-Switching

(PSIS) [73] swaps single objects belonging to the same class between a pair of images
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considering also the scales and shapes of the candidate instances. Producing images

by swapping objects of low-performing classes improves detection quality. For this

reason, they use the performance ranking of the classes while determining the objects

to swap and the number of images to generate.

A more prominent approach is to use GANs to generate images rather than copying

existing objects: an example is Task Aware Data Synthesis [72] which uses three

competing networks to generate hard examples: a synthesizer, a discriminator and a

target network where the synthesizer is expected to fool both the discriminator and

the target network by yielding high quality synthetic hard images. Given an image

and a foreground object mask, the synthesizer aims to place the foreground object

mask onto the image to produce realistic hard examples. The discriminator is adopted

in order to enforce the synthesizer towards realistic composite images. The target

network is an object detector, initially pretrained to have a baseline performance.

Instead of generating images, the Positive RoI (pRoI) Generator [74] generates a set

of positive RoIs with given IoU, BB relative spatial and foreground class distributions.

The approach relies on a bounding box generator that is able to generate bounding

boxes (i.e. positive example) with the desired IoU with a given bounding box (i.e.

ground truth). Noting that the IoU of an proposal is related to its hardness [32], the

pRoI generator is a basis for simulating, thereby analyzing, hard sampling methods

(Section 3.2.1.1).

3.2.2 Foreground-Foreground (a.k.a. Positive-Positive) Class Imbalance

Definition. In foreground-foreground class imbalance, the over-represented and the

under-represented classes are both foreground classes. This imbalance among the

foreground classes has not attracted as much interest as foreground-background im-

balance. We discuss this problem in two categories according to their origin: (i)

dataset-level, and (ii) batch-level.
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Figure 3.5: Some statistics of common datasets (training sets). For readability, the y

axes are in logarithmic scale. (a) The total number of examples from each class.(b)

The number of images vs. the number of examples.(c) The number of images vs. the

number of classes. (This figure is inspired from Kuznetsova et al. [98] but calculated

and drawn from scratch).

3.2.2.1 Foreground-Foreground Imbalance Owing to the Dataset

Definition. Objects exist at different frequencies in nature, and therefore, there is nat-

urally an imbalance among the object classes in datasets – Fig. 3.5(a) which shows

that the datasets suffer from significant gap in class examples. For this reason, over-

fitting in favor of the over-represented classes may be inevitable for naive approaches

on such datasets.
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Solutions. Owing to the fact that some of the generative methods are able to gen-

erate new images or bounding boxes (Section 3.2.1.4) that cannot be obtained by

the conventional training pipeline, these methods can also be adopted to alleviate the

foreground-foreground class imbalance problem.

Another method addressing this imbalance problem from the object detection per-

spective is proposed by Ouyang et al. [28]. Their method of finetuning long-tail

distribution for object detection (here, “long tail” corresponds to under-represented

classes) provides an analysis on the effects of this level to the training process and

uses clustering based on visual similarity. In their analysis, two factors affecting the

training are identified: (i) the accuracy of the prediction, and (ii) the number of exam-

ples. Based on this observation, they handcrafted a similarity measure among classes

based on the inner product of the features of the last layer of the pretrained backbone

network (i.e. GoogLe Net [106]), and grouped the classes hierarchically in order to

compensate for dataset-level foreground class imbalance. For each node in the de-

signed hierarchy tree, a classifier is learned based on the confidence scores of the

classifier. The leaves of the tree are basically an SVM classifier that determines the

final detection for the given proposal.

3.2.2.2 Foreground-Foreground Imbalance Owing to the Batch

Definition. The distribution of classes in a batch may be uneven, introducing a bias in

learning. To illustrate the batch-level foreground imbalance, Fig. 3.4(b) provides the

mean number of anchors per class on the COCO dataset [13]. A random sampling

approach is expected to allocate an unbalanced number of positive examples in favor

of the one with more anchors, which may lead the model to be biased in favor of the

over-represented class during training. Also see Fig. 3.5(b), and (c), which display

that the numbers of objects and classes in an image vary significantly.

Solutions. A solution for this problem, Online Foreground Balanced (OFB) sampling

by Oksuz et al. [74], shows that the foreground-foreground class imbalance prob-

lem can be alleviated at the batch level by assigning probabilities to each bounding

box to be sampled, so that the distribution of different classes within a batch is uni-

form. In other words, the approach aims to promote the classes with lower number of
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positive examples during sampling. While the method is efficient, the performance

improvement is not significant. Moreover, the authors have not provided an analy-

sis on whether or not batch-level imbalance causes a bias in learning, therefore, we

discuss this as an open problem in Section 3.2.4.

3.2.3 Comparative Summary

In early deep object detectors, hard sampling methods were commonly used to ensure

balanced training. OHEM [27] was one of the most effective methods with a relative

improvement of 14.7% over the Fast R-CNN baseline (with VGG-16 backbone) on

COCO 2015. On the other hand, recent methods aim to use all examples either by

soft sampling or without sampling. Among the seven papers investigated under these

categories, six of them have been published during the last year. The pioneering

Focal Loss method [18] achieves 9.3% relative improvement compared to the baseline

alpha-balanced cross entropy on Retina-Net (i.e. from 31.1 to 34.0 APC5). AP Loss

[37], with a relative improvement of 3.9% over Focal Loss (i.e. from 33.9 to 35.0

APC), is also promising.

Sampling methods for positive examples are not many. One approach, prime sam-

ple attention (PISA) [33], reported a relative improvement of 4.4% (from 36.4 to

38.0 APC when applied to positives only) and showed that sampling also matters for

positives. We notice several crucial points regarding prime sampling. First of all, con-

trary to the popular belief that hard examples are more preferable over easy examples,

PISA shows that, if balanced properly, the positive examples with higher IoUs, which

normally incur smaller loss values, are more useful for training compared to OHEM

[27] applied to positives. Moreover, the results suggest that the major improvement

of the method is on localisation since there is no performance improvement in AP50,

and there is significant improvement for APs with higher IoUs (i.e. up to 2.6% in

AP75). As a result, the improvement can be due to the changing nature of the IoU

distribution rather than presenting more descriptive samples to the classifier since

the classifier performs worse but the regressor improves (see the discussion on IoU

distribution imbalance in Section 3.4.2).
5 Unless otherwise stated, COCO 2017 minival results are reported using the COCO-style AP, denoted by

APC.
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3.2.4 Open Issues

As we have highlighted before, class imbalance problem can be analysed in two main

categories: foreground-background class imbalance and foreground-foreground class

imbalance. In the following, we identify issues to be addressed with a more focus on

foreground-foreground imbalance since it has received less attention.

3.2.4.1 Sampling More Useful Examples

Open Issue. Many criteria to identify useful examples (e.g. hard example, example

with higher IoUs etc.) for both positive and negative classes have been proposed.

However, recent studies point out interesting phenomena that need further investiga-

tion: (i) For the foreground-background class imbalance, soft sampling methods have

become more prominent and optimal weighting of examples needs further investiga-

tion. (ii) Hard example mining [27] for the positive examples is challenged by the

idea that favors examples with higher IoUs, i.e. the easier ones [33]. (iii) The use-

fulness of the examples are not considered in terms of foreground-foreground class

imbalance.

Explanation6. In terms of the usefulness of the examples, there are two criteria to be

identified: (i) The usefulness of the background examples, and (ii) the usefulness of

the foreground examples.

The existing approaches mostly concentrated around the first criterion using different

properties (i.e. IoU, loss value, ground truth confidence score) to sample a useful ex-

ample for the background. However, the debate is still open after Li et al. [68] showed

that there are large number of outliers during sampling using these properties, which

will result in higher loss values and lower confidence scores. Moreover, the methods

preferring a weighting over all the examples [18, 68] rather than discarding a large

portion of samples have proven to yield more performance improvement. For this

reason, currently, soft sampling approaches that assign weights to the examples are

more popular, but which negative examples are more useful needs more investigation.

6 Issues that may not be immediately clear include a detailing explanation section
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For the foreground examples, Cao et al. [33] apply a specific sampling methodol-

ogy to the positives based on the IoU, which has proven useful. Note that, this idea

conflicts with the hard example mining approach since while OHEM [27] offers to

pick the difficult samples, prime samples concentrate on the positive samples with

higher IoUs with the ground truth, namely the easier ones. For this reason, currently

it seems that the usefulness of the examples is different for the positives and negatives.

To sum up, further investigation is required for identifying the best set of examples,

or figuring out how to weigh the positive examples during training.

Moreover, sampling methods have proven to be useful for foreground-background

class imbalance, however, their effectiveness for the foreground-foreground class im-

balance problem needs to be investigated.

3.2.4.2 Foreground-Foreground Class Imbalance Problem

Open Issue. Foreground-foreground class imbalance has not been addressed as thor-

oughly as foreground-background class imbalance. For instance, it is still not known

why a class performs worse than others; a recent work [73] discredits the correlation

between the number of examples in a class and its detection performance. Moreover,

despite its differences, the rich literature for addressing imbalance in image classifi-

cation has not been utilized in object detection.

Explanation. One important finding of a recent study [73] is that a class with the

fewest examples in the dataset can yield one of the best detection performances and

thus the total number of instances in the dataset is not the only issue to balance the

performance of foreground classes. Such discrepancies presents the necessity of an

in-depth analysis to identify the root cause and investigate for better sampling mech-

anisms to employ while balancing a dataset.

Moreover, we identify a similarity and a difference between the class imbalance from

image classification perspective and the foreground-foreground class imbalance prob-

lem (Appendix A). The similarity is that neither has a background class. On the other

hand, the proposals are labeled and sampled in an online fashion in object detection,

which makes the data that the detector is trained with not static.
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Class imbalance problem is addressed in image classification from a larger scope by

using not only classical over-sampling and under-sampling methods but also (i) trans-

fer learning to transfer the information from over-represented to under-represented

classes, (ii) data redundancy methods to be useful for under-sampling the over-represented

classes, (iii) weak supervision in order to be used in favor of under-represented class

and (iv) a specific loss function for balancing foreground classes. Such approaches

can be adopted for addressing foreground-foreground imbalance in object detection

as well.

3.2.4.3 Foreground-Foreground Imbalance Owing to the Batch

Open Issue. The distribution of the foreground classes in a batch might be very dif-

ferent than that of the overall dataset, especially when the batch size is small. An

important question is whether this may have an influence on the overall performance.

Explanation. A specific example is provided in Fig. 3.6 from the COCO dataset [13]:

An over-represented class (‘person’ class in this example) across the dataset may be

under-represented in a batch or vice versa. Similar to the foreground-background

class imbalance problem, over-representing a class in a batch will increase the prob-

ability of the corresponding class to dominate more.

Even when a batch has uniform foreground-foreground class distribution, an imbal-

ance may occur during sampling due to the fact that sampling algorithms either select

a subset or apply a weighting to the large number of boxes. If the sampling mech-

anism tends to choose the samples from specific classes in the image, balancing the

dataset (or the batch) may not be sufficient to address the foreground-foreground class

imbalance entirely.

3.2.4.4 Ranking-Based Loss Functions

Open Issue. AP Loss [37] sorts the confidence scores pertaining to all classes together

to make a ranking between the detection boxes. However, this conflicts with the

observation that the optimal confidence scores vary from class to class [107].
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Figure 3.6: Illustration of batch-level class imbalance. (a) An example that is con-

sistent with the overall dataset (person class has more instances than parking meter).

(b) An example that has a different distribution from the dataset. Images are from the

COCO dataset.

Explanation. Chen et al. [37] use all the confidence scores all together without paying

attention to the fact that the optimal threshold per class may vary [107]. Therefore,

a method that sorts the confidence scores in a class-specific manner might achieve a

better performance. Addressing this issue is an open problem.

3.3 Imbalance 2: Scale Imbalance

We discuss scale the imbalance problem in two parts: the first part, Object/Box-Level

Scale Imbalance, analyses the problems arising from the imbalanced distribution of

the scales of the objects and proposals (i.e. anchor or RoI). The second part, Feature

Imbalance, analyses the problems arising at the feature extraction level and concerns

the methods using pyramidal features.
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Figure 3.7: Imbalance in scales of the objects in common datasets: the distributions

of BB width (a), height (b), and area (c). Values are with respect to the normalized

image (i.e. relative to the image). For readability, the y axes are in log-scale.

3.3.1 Object/Box-Level Scale Imbalance

Definition. Scale imbalance occurs when certain sizes of the objects or proposals (i.e.

anchor or RoI) are over-represented in the dataset. It has been shown that this affects

the scales of the estimated RoIs and the overall detection performance [30]. Fig. 3.7

presents the relative width, height and the area of the objects in the COCO dataset

[13]; we observe a skewness in the distributions in favor of smaller objects.

Many of the deep object detectors rely on a backbone convolutional neural network

(e.g. [47, 106, 108, 109, 110]), pretrained on an image classification task, in order

to extract visual features from the input image. Li et al. [111] discuss the cons of

employing such networks designed for the classification task and propose a backbone

specially designed for the object detection task where they limit the spatial down-

sampling rate for the high level features. Overall, these networks, also called the

backbones, play an important role for the performance of the object detectors, but

they alone are insufficient for handling the scale diversity of the proposal boxes (i.e.

anchors/RoIs).

Solutions. First examples of deep object detectors made predictions from the final

layer of the backbone network (see [21, 22] and Fig. 3.8(a)), and therefore, ne-

glected the scale-diversity of BBs. The solutions to addressing scale imbalance can be
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Figure 3.8: An illustration and comparison of the solutions for scale imbalance. “Pre-

dict” refers to the prediction performed by a detection network. The layered boxes

correspond to convolutional layers. (a) No scale balancing method is employed. (b)

Prediction is performed from backbone features at different levels (i.e. scales) (e.g.

SSD [24]). (c) The intermediate features from different scales are combined before

making prediction at multiple scales (e.g. Feature Pyramid Networks [29]). (d) The

input image is scaled first and then processed. Each I corresponds to an image pyrami-

dal feature (e.g. Image Pyramids [30]). (e) Image and feature pyramids are combined.

Rather than applying backbones, light networks are used in order to extract features

from smaller images.

grouped into four (Fig. 3.8): methods predicting from the hierarchy of the backbone

features (Fig. 3.8(b)), methods based on feature pyramids (Fig. 3.8(c)), methods

based on image pyramids (Fig. 3.8(d)) and finally methods combining image and

feature pyramids (Fig. 3.8(e)).

3.3.1.1 Methods Predicting from the Feature Hierarchy of Backbone Features

These methods make independent predictions from the features at different levels

of the backbone network (Fig. 3.8(b)). This approach naturally considers object

detection at multiple scales since the different levels encode information at different

scales; e.g., if the input contains a small object, then earlier levels already contain
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strong indicators about the small object [76].

An illustratory example for one-stage detectors is the Single Shot Detector (SSD)

[24], which makes predictions from features at different layers.

Two-stage detectors can exploit features at different scales while either estimating the

regions (in the first stage) or extracting features from these regions (for the second

stage). For example, the Multi Scale CNN (MSCNN) [77] uses different layers of

the backbone network while estimating the regions in the first stage whereas Yang

et al. [76] choose an appropriate layer to pool based on the scale of the estimated

RoI; called Scale Dependent Pooling (SDP), the method, e.g., pools features from

an earlier layer if the height of the RoI is small. Alternatively, the Scale Aware Fast

R-CNN [78] learns an ensemble of two classifiers, one for the small scale and one for

the large scale objects, and combines their predictions.

3.3.1.2 Methods Based on Feature Pyramids

Methods based on feature hierarchies use features from different levels independently

without integrating low-level and high-level features. However, the abstractness (se-

mantic content) of information varies among different layers, and thus it is not reliable

to make predictions directly from a single layer (especially the lower layers) of the

backbone network.

To address this issue, the Feature Pyramid Networks (FPN) [29] combine the features

at different scales before making predictions. FPN exploits an additional top-down

pathway along which the features from the higher level are supported by the features

from a lower level using lateral connections in order to have a balanced mixed of these

features (Fig. 3.8(c)). The top-down pathway involves upsampling to ensure the sizes

to be compatible and lateral connections are basically 1 × 1 convolutions. Similar

to feature hierarchies, a RoI pooling step takes the scale of the RoI into account to

choose which level to pool from. These improvements allow the predictor network

to be applied at all levels which improves the performance especially for small and

medium sized objects.

Although FPN was originally proposed for object detection, it quickly became popu-
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lar and has been used for different (but related) tasks such as shadow detection [112],

instance segmentation [113, 114] and panoptic segmentation [115].

Despite its benefits, FPN is known to suffer from a major shortcoming due to the

straightforward combination of the features gathered from the backbone network –

the feature imbalance problem. We discuss this problem in Section 3.3.2.

3.3.1.3 Methods Based on Image Pyramids

The idea of using multi-scale image pyramids, presented in Fig. 3.8(d), for the image

processing tasks goes back to the early work by Adelson et al. [116] and was popular

before deep learning. In deep learning, these methods are not utilized as much due

to their relatively high computational and memory costs. However, recently, Singh

and Davis [30] presented a detailed analysis on the effect of the scale imbalance

problem with important conclusions and proposed a method to alleviate the memory

constraint for image pyramids. They investigated the conventional approach of train-

ing object detectors in smaller scales but testing them in larger scales due to memory

constraints, and showed that this inconsistency between test and training time scales

has an impact on the performance. In their controlled experiments, upsampling the

image by two performed better than reducing the stride by two. Upon their analy-

sis, the authors proposed a novel training method coined as SNIP based on image

pyramids rather than feature pyramids. They argue that, while training scale-specific

detectors by providing the input to the appropriate detector will lose a significant por-

tion of the data, and that using multi-scale training on a single detector will increase

the scale imbalance by preserving the variation in the data. Therefore, SNIP trains

multiple proposal and detector networks with images at different sizes, however, for

each network only the appropriate proposal (i.e. anchor or RoI) scales are marked as

valid, by which it ensures multi-scale training without any loss in the data. Another

challenge, the limitation of the GPU memory, is overcome by an image cropping ap-

proach. The image cropping approach is made more efficient in a follow-up method,

called SNIPER [31].
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3.3.1.4 Methods Combining Image and Feature Pyramids

Image pyramid based methods are generally less efficient than feature pyramid based

methods in terms of computational time and memory. However, image pyramid based

methods are expected to perform better, since feature pyramid based methods are

efficient approximations of such methods. Therefore, to benefit from advantages of

both approaches, they can be combined in a single model.

Even though there are different architectures, the generic approach is illustrated in

Fig. 3.8(e). For example, Efficient Featurized Image Pyramids [79] uses five images

at different scales, four of which are provided to the light-weight featurized image

pyramid network module (i.e. instead of additional backbone networks) and the orig-

inal input is fed into the backbone network. This light-weight network consists of 4

consecutive convolutional layers designed specifically for each input. The features

gathered from this module are integrated to the backbone network features at appro-

priate levels according to their sizes, such that the image features are combined with

the features extracted from the backbone network using feature attention modules.

Furthermore, after attention modules, the gathered features are integrated with the

higher levels by means of forward fusion modules before the final predictions are

obtained.

A similar method that is also built on SSD and uses downsampled images is Enriched

Feature Guided Refinement Network [67] in which a single downsampled image is

provided as an input to the Multi-Scale Contextual Features (MSCF) Module. The

MSCF consists of two consecutive convolutional layers followed by three parallel

dilated convolutions, which is also similar to the idea in Trident Networks [81]. The

outputs of the dilated convolutions are again combined using 1 × 1 convolutions.

The authors set the downsampled image size to meet the first prediction layer in the

regular SSD architecture (e.g. for 320×320 input, the size of the downsampled image

is 40× 40). While Pang et al. [79] only provide experiments with the SSD backbone,

Nie et al. [67] show that their modules can also be used in the ResNet backbone.

An alternative approach is to generate super-resolution feature maps. Noh et al. [80]

proposed super-resolution for small object detection for two-stage object detectors
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which lack strong representations of small RoIs after RoI standardization layers.

Their architecture adds four additional modules to the baseline detector: (i) Given

the original image, target extractor outputs the targets for the discriminator by using

dilated convolutions. This network also shares parameters with the backbone net-

work. (ii) Given the features obtained from the backbone network using the original

image and a 0.5x downsampled image, the generator network generates super resolu-

tion feature maps for small RoIs. (iii) Given the outputs of (i) and (ii), a discriminator

is trained in the conventional GAN setting. (iv) Finally, if the RoI is a small object

according to a threshold, then the prediction is carried out by the small predictor, or

else by the large predictor.

Another approach, Scale Aware Trident Networks [81], combines the advantages of

the methods based on feature pyramids and image pyramids without using multiple

downsampled images but employing only dilated convolutions. The authors use di-

lated convolutions [117] with dilation rates 1, 2 and 3 in parallel branches in order to

generate scale-specific feature maps, making the approach more accurate compared

to feature pyramid based methods. In order to ensure that each branch is specialized

for a specific scale, a proposal box (i.e. anchor or RoI) is provided to the appropri-

ate branch according to its size. Their analysis on the effect of receptive field size

on objects of different scales shows that larger dilation rates are more appropriate

for objects with larger scales. In addition, since using multiple branches is expected

to degrade the efficiency due to the increasing number of operations, they proposed

a method for approximating these branches with a single parameter-sharing branch,

with minimal (insignificant) performance loss.

3.3.2 Feature-level Imbalance

Definition. The integration of the features from the backbone network is expected to

be balanced in terms of low- and high-level features so that consistent predictions can

follow. To be more specific, if we analyse the conventional FPN architecture in Fig.

3.9, we notice that, while there are several layers from the C2 layer of the bottom-

up pass with low-level features to the P5 layer of the feature pyramid, the C2 layer

is directly integrated to the P2 layer, which implies the effect of the high-level and
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Figure 3.9: Feature-Level imbalance is illustrated on the FPN architecture.

low-level features in the P2 and P5 layers to be different.

Solutions. There are several methods to address imbalance in the FPN architec-

tures, which range from designing improved top-down pathway connections [65, 66]

to completely novel architectures. Here, we consider the methods to alleviate the

feature-level imbalance problem using novel architectures, which we group into two

according to what they use as a basis, pyramidal or backbone features.

3.3.2.1 Methods Using Pyramidal Features as a Basis

These methods aim to improve the pyramidal features gathered by FPN using addi-

tional operations or steps – see an overview of these methods in Fig. 3.10(a,b).

Path Aggregation Network (PANet) [82] is the first to show that the features gathered

by an FPN can be further enhanced and an RoI can be mapped to each layer of the

pyramid rather than associating it with a single one. The authors suggest that low-

level features, such as edges, corners, are useful for localising objects, however, the

FPN architecture does not sufficiently make use of these features. Motivated from

this observation, PANet, depicted in Fig. 3.10(a), improves the FPN architecture with

two new contributions:

1. Bottom-up path augmentation extends the feature pyramid in order to allow the

low-level features to arrive at the layers where the predictions occur in shorter

steps (red arrows in Fig. 3.10(a) within FPN and to the final pyramidal features
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Figure 3.10: High-level diagrams of the methods designed for feature-level imbal-

ance. (a) Path Aggregation Network. FPN is augmented by an additional bottom-up

pathway to facilitate a shortcut (Red arrows) of the low-level features to the final pyra-

midal features. (b) Libra FPN. A residual feature map is learned. We illustrate on P2.

(c)Scale Transferrable Detection Network. Pyramidal features are learned via pool-

ing, identity mapping and scale transfer layers. (d) Parallel FPN. Red Arrows: input

and outputs of MSCA for P3. (e) Deep Feature Pyramid Reconfiguration. Residual

features are learned via global attention and local reconfiguration modules. Illustrated

on P2. (f) Zoom Out-And-In Network. (g) Multi-Level FPN. TUM: Thinned U-Shape

Module (h) NAS-FPN.
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to see the shortcut). For this reason, in a way a shortcut is created for the

features in the initial layers. This is important since these features have rich

information about localisation thanks to edges or instance parts.

2. While in the FPN, each RoI is associated with a single level of feature based on

its size, PANet associates each RoI to every level, applies RoI Pooling, fuses

using element-wise max or sum operation and the resulting fixed-sized feature

grid is propagated to the detector network. This process is called Adaptive

Feature Pooling.

Despite these contributions, PANet still uses a sequential pathway to extract the fea-

tures.

Different from the sequential enhancement pathway of PANet, Libra FPN [32] aims

to learn the residual features by using all of the features from all FPN layers at once

(Fig. 3.10(b)). Residual feature layer computation is handled in two steps:

1. Integrate: All feature maps from different layers are reduced to one single

feature map by rescaling and averaging. For this reason, this step does not have

any learnable parameter.

2. Refine: The integrated feature map is refined by means of convolution layers or

non-local neural networks [118].

Finally the refined features are added to each layer of the pyramidal features. The au-

thors argue that in addition to FPN, their method is complementary to other methods

based on pyramidal features as well, such as PANet [82].

3.3.2.2 Methods Using Backbone Features as a Basis

These methods build their architecture on the backbone features and ignore the top-

down pathway of FPN by employing different feature integration mechanisms, as

displayed in Fig. 3.10(c-h).

Scale-Transferrable Detection Network (STDN) [83] generates the pyramidal fea-

tures from the last layer of the backbone features which are extracted using DenseNet
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[119] blocks (Fig. 3.10(c)). In a DenseNet block, all the lower level features are prop-

agated to every next layer within a block. In Fig. 3.10(c), the number of DenseNet

(dense) blocks is four and the ith block is denoted by Di. Motivated by the idea that

direct propagation of lower-level layers to the subsequent layers also carries lower-

level information, STDN builds pyramidal features consisting of six layers by using

the last block of DenseNet. In order to map these layers to lower sizes, the approach

uses mean pooling with different receptive field sizes. For the fourth feature map, an

identity mapping is used. For the last two layers which the feature maps of DenseNet

are to be mapped to higher dimensions, the authors propose a scale transfer layer

approach. This layer does not have any learnable parameter and given r, the desired

enlargement for a feature map, the width and height of the feature map are enlarged

by r by decreasing the total number of feature maps (a.k.a. channels). STDN in-

corporates high- and low-level features with the help of DenseNet blocks and is not

easily adaptable to other backbone networks. In addition, no method is adopted to

balance the low- and high-level features within the last block of DenseNet.

Similar to STDN, Parallel FPN [84] also employs only the last layer of the backbone

network and generates multi-scale features by exploiting the spatial pyramid pooling

(SPP) [120] – Fig. 3.10(d). Differently, it increases the width of the network by

pooling the lastD feature maps of the backbone network multiple times with different

sizes, such that feature maps with different scales are obtained. Fig. 3.10(e) shows

the case when it is pooled for three times and D = 2. The number of feature maps

is decreased to 1 by employing 1 × 1 convolutions. These feature maps are then fed

into the multi-scale context aggregation (MSCA) module, which integrates context

information from other scales for a corresponding layer. For this reason, MSCA,

operating on a scale-based manner, has the following inputs: Spatial pyramid pooled

D feature maps and reduced feature maps from other scales. We illustrate the inputs

and outputs to the MSCA module for the middle scale feature map by red arrows in

Fig. 3.10(e). MSCA first ensures the sizes of each feature map to be equal and applies

3× 3 convolutions.

While previous methods based on backbone features only use the last layer of the

backbone network, Deep Feature Pyramid Reconfiguration [85] combines features

from different levels of backbone features into a single tensor (X in Fig. 3.10(e)) and
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then learns a set of residual features from this tensor. A sequence of two modules are

applied to the tensor X in order to learn a residual feature map to be added to each

layer of the backbone network. These modules are,

1. Global Attention Module aims to learn the inter-dependencies among different

feature maps for tensor X . The authors adopt Squeeze and Excitation Blocks

[121] in which the information is squeezed to lower dimensional features for

each feature map initially (i.e. squeeze step), and then a weight is learned

for each feature map based on learnable functions including non-linearity (i.e.

excitation step).

2. Local Configuration Module aims to improve the features after global attention

module by employing convolutional layers. The output of this module presents

the residual features to be added for a feature layer from the backbone network.

Similarly, Zoom Out-and-In Network [86] also combines low- and high-level fea-

tures of the backbone network. Additionally, it includes deconvolution-based zoom-in

phase in which intermediate step pyramidal features, denoted by Bis in Fig. 3.10(f),

are learned. Note that, unlike FPN [29], there is no lateral connection to the back-

bone network during the zoom-in phase, which is basically a sequence of deconvo-

lutional layers (see red arrows for the zoom-in phase). Integration of the high- and

low-level features are achieved by stacking the same-size feature maps from zoom-

out and zoom-in phases after zoom-in phase (i.e. B3 and C3). On the other hand,

these concatenated feature maps are to be balanced especially for the B3 − C3 and

B4 − C4 blocks since B3 and C3 (or B4 and C4) are very far from each other in

the feature hierarchy, which makes them have different representations of the data.

In order to achieve this, the proposed map attention decision module learns a weight

distribution on the layers. Note that the idea is similar to the squeeze and excitation

modules [121] employed by Kong et al. [85], however, it is shown by the authors that

their design performs better for their architecture. One drawback of the method is that

it is built upon Inception v2 (a.k.a. Inception BN) [122] and corresponding inception

modules are exploited throughout the method, which may make the method difficult

to adopt for other backbone networks.

Different from Kong et al. [85] and Li et al. [86], Multi-Level FPN [87] stacks one
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highest and one lower level feature layers and recursively outputs a set of pyramidal

features, which are all finally combined into a single feature pyramid in a scale-wise

manner (Fig. 3.10(g)). Feature fusion module (FFM) v1 equals the dimensions of the

input feature maps by a sequence of 1 × 1 convolution and upsampling operations.

Then, the resulting two-layer features are propagated to thinned U-shape modules

(TUM). Excluding the initial propagation, each time these two-layer features are in-

tegrated to the output of the previous TUM by 1 × 1 convolutions in FFMv2. Note

that the depth of the network is increasing after each application of the TUM and the

features are becoming more high level. As a result of this, a similar problem with the

FPN feature imbalance arise again. As in the work proposed by [85], the authors em-

ployed squeeze and excitation networks [121] to combine different pyramidal shape

features.

Rather than using hand-crafted architectures, Neural Architecture Search FPN (NAS-

FPN) [88] aims to search for the best architecture to generate pyramidal features

given the backbone features by using neural architecture search methods [123] – Fig.

3.10(h). This idea was also previously applied to the image classification task and

showed to perform well [124, 125, 126]. Auto-FPN is also another example for using

NAS while learning the connections from backbone features to pyramidal features

and beyond. While NAS-FPN achieves higher performance, Auto-FPN is more effi-

cient and has less memory footprint. The idea is also applied to backbone design for

object detection by Chen et al. [127], however it is not within the scope of our review.

Considering their performance in other tasks such as EfficientNet [126] and different

definitions of search spaces may lead to better performance in NAS methods, more

work is expected for FPN design using NAS.

3.3.3 Comparative Summary

SSD [24] provides an analysis on the importance of making predictions from different

number of layers with varying scales. Increasing the number of prediction layers

leads to a significant performance gain. While predicting from one layer provides

62.4 AP50 on Pascal VOC 2007 test set [48] with SSD-300, it is 70.7 and 74.6 when

the number of prediction layers is 3 and 5 respectively (while keeping the number of
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predictions almost equal). Therefore, once addressed in the detection pipeline, scale

imbalance methods can significantly boost performance.

Feature pyramid based methods increased the performance significantly compared to

SSD. Once included in Faster R-CNN with ResNet-101, the pioneering FPN study

[29] has a relative improvement of 3.7% on COCO testdev (from 34.9 to 36.2). An-

other virtue of the feature pyramids is the efficiency due to having lighter detection

networks: e.g., the model with FPN is reported to be more than two times faster than

baseline Faster R-CNN with ResNet-50 backbone (150ms vs 320ms per image on a

single NVIDIA M40 GPU) [29]. Currently, the most promising results are obtained

via NAS by learning how to combine the backbone features from different levels.

Using the ResNet-50 backbone with 1024 × 1024 image size, a 10.2% relative im-

provement is obtained on COCO testdev (from 40.1 to 44.2) by NAS-FPN [88] but it

needs also to be noted that number of parameters in the learned structure is approxi-

mately two times higher and inference time is 26% more (92.1ms vs 73.0ms per image

on a single P100 GPU). Inference time is also a major drawback of the image pyra-

mid based methods. While SNIP reports inference at approximately 1 image/sec, the

faster version, SNIPER, improves it to 5 images/sec on a V100 GPU (200 ms/image).

In order to adjust the inference time-performance trade-off in scale imbalance, a com-

mon method is to use multi-scale images with one backbone and multiple lighter

networks. All methods in Section 3.3.1.4 are published last year. To illustrate the

performance gains: Pang et al. [79] achieved 19.5% on COCO test-dev relative im-

provement with 12ms per image inference time compared to SSD300 with the same

size image and backbone network having 10ms per image inference time (APCs are

25.1 vs 30.0).

3.3.4 Open Issues

Here we discuss open problems concerning scale imbalance.
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3.3.4.1 Characteristics of Different Layers of Feature Hierarchies

In feature-pyramid based methods (Section 3.3.2), a prominent and common pat-

tern is to include a top-down pathway in order to integrate higher-layer features with

lower-layer ones. Although this approach has yielded promising improvements in

performance, an established perspective about what critical aspects of features (or in-

formation) are handled differently in those methods is missing. Here, we highlight

three such aspects:

(i) Abstractness. Higher layers in a feature hierarchy carry high-level, semantically

more meaningful information about the objects or object parts whereas the lower

layers represent low-level information in the scene, such as edges, contours, corners

etc. In other words, higher-layer features are more abstract.

(ii) Coarseness. To reduce dimensions, feature networks gradually reduce the size

of the layers towards the top of the hierarchy. Although this is reasonable given

the constraints, it has an immediate outcome on the number of neurons that a fixed

bounding box at the image level encapsulates at the different feature layers. Namely,

the BB will include less neurons when projected to the highest layer. In other words,

higher layers are more coarse.

(iii) Cardinality. In FPN and many of its variants, prediction is performed for an

object from the layer that matches the object’s scale. Since the scales of objects

are not balanced, this approach has a direct affect on the number of predictions and

backpropagation performed through a layer.

We argue that analyzing and addressing these aspects in a more established manner is

critical for developing more profound solutions. Although we see that some methods

handle imbalance in these aspects (e.g. Libra FPN [32] addresses all three aspects,

Path Aggregation Network [82] handles abstractness and cardinality, whereas FPN

solves only abstractness to a certain extent), these aspects should be quantified and

used for comparing different methods.
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3.3.4.2 Image Pyramids in Deep Object Detectors

Open Issue. It is hard to exploit image pyramids using neural networks due to memory

limitations. Therefore, finding solutions alleviating this constraint (e.g., as in SNIP

[30]) is still an open problem.

Explanation. The image pyramids (Fig. 3.8(d)) were commonly adopted by the pre-

deep learning era object detectors. However, memory limitations motivated the meth-

ods based on pyramidal features which, with less memory, are still able to generate a

set of features with different scales allowing predictions to occur at multiple scales.

On the other hand, feature-pyramids are actually approximations of the features ex-

tracted from image pyramids, and there is still room for improvement given that using

image pyramids is not common among deep object detectors.

3.4 Imbalance 3: Spatial Imbalance

Definition. Size, shape, location – relative to both the image or another box – and IoU

are spatial attributes of bounding boxes. Any imbalance in such attributes is likely

to affect the training and generalization performance. For example, a slight shift in

position may lead to drastic changes in the regression (localisation) loss, causing an

imbalance in the loss values, if a suitable loss function is not adopted. In this section,

we discuss these problems specific to the spatial attributes and regression loss.

3.4.1 Imbalance in Regression Loss

Definition. This imbalance problem is concerned with the uneven contributions of

different individual examples to the regression loss. Fig. 3.11 illustrates the problem

using L1 and L2 losses, where the hard example (i.e. the one with low IoU, the yellow

box) is dominating the L2 loss, whereas L1 loss assigns relatively more balanced

errors to all examples.

Solutions. The regression losses for object detection have evolved under two main

streams: The first one is the Lp-norm-based (e.g. L1, L2) loss functions and the
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IoU L1 L2
0.94 1.00 0.50
0.65 6.00 6.00
0.51 10.00 14.00

IoU L1 L2 L1Smooth
0.88 2.00 2.00 1
0.65 6.00 4.82 2.82
0.51 10.00 6.28 4.28

Figure 3.11: An illustration of imbalance in regression loss. Blue denotes the ground

truth BB. There are three prediction boxes, marked with green, red and yellow colors.

In the table on the right, L1 and L2 columns show the sum of L1 and L2 errors

between the box corners of the associated prediction box and the ground-truth (blue)

box. Note that the contribution of the yellow box to the L2 loss is more dominating

than its effect on total L1 error. Also, the contribution of the green box is less for the

L2 error.

second one is the IoU-based loss functions. Table 3.3 presents a comparison of the

widely used regression losses.

Replacing L2 regression loss [22, 128], Smooth L1 Loss [22] is the first loss function

designed specifically for deep object detectors, and it has been widely adopted (e.g.

[18, 19, 24]) since it reduces the effect of the outliers (compared to L2 loss) and it is

more stable for small errors (compared to L1 loss 8). Smooth L1 loss, a special case

of Huber Loss [129], is defined as:

L1smooth(b) =

0.5(b)2, if |b| ≤ β

β(|b| − 0.5β), otherwise.
(3.6)

where b = bij − b̂ij such that b̂ij is the jth parameter of b̂i ∈ R4, the predicted

parameters from the box regression network; and bi, the ground truth corresponding

to b̂i, is similarly represented. β is the cut-off parameter to indicate the coordinate to

switch from L2 Loss to L1 Loss. Setting β also depends on the normalization of the

ground truth parameters. For example, when they are normalized to unit Gaussian,

then β is set to 0.11 in general [100].

Motivated by the fact that the gradients of the outliers still have a negative effect on
8 However, recently using L1 loss has become more common compared to Smooth L1 loss [14, 100]
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Table 3.3: A list of widely used loss functions for the BB regression task.

Loss Function Explanation

L2 Loss Employed in earlier deep object detectors [21]. Stable for small

errors but penalizes outliers heavily.

L1 Loss Not stable for small errors.7

Smooth L1 Loss [22] Baseline regression loss function. More robust to outliers com-

pared to L1 Loss.

Balanced L1 Loss [32] Increases the contribution of the inliers compared to smooth L1

loss.

Kullback-Leibler Loss [90] Predicts a confidence about the proposal box (i.e. anchor or RoI)

based on KL divergence.

IoU Loss [91] Uses an indirect calculation of IoU as the loss function.

Bounded IoU Loss [92] Fixes all parameters of an input box in the IoU definition except

the one whose gradient is estimated during backpropagation.

GIoU Loss [93] Extends the definition of IoU based on the smallest enclosing

rectangle of the inputs to the IoU, then uses directly IoU and the

extended IoU, called GIoU, as the loss function.

DIoU Loss, CIoU Loss [94] Extends the definition of IoU by adding additional penalty terms

concerning aspect ratio difference and center distances between

two boxes.

learning the inliers with smaller gradients in Smooth L1 loss, Balanced L1 Loss [32]

increases the gradient contribution of the inliers to the total loss value. To achieve

this, the authors first derive the definition of the loss function originating from the

desirable balanced gradients across inliers and outliers:

∂L1balanced
∂b

=

α ln(κ|b|+ 1), if |b| < 1

θ, otherwise,
(3.7)

where α controls how much the inliers are promoted (small α increases the contribu-
tion of inliers); θ is the upper bound of the error to help balancing between the tasks.
Integrating Eq. 3.7, L1balanced is derived as follows:

L1balanced(b) =


α
κ (κ|b|+ 1) ln(κ|b|+ 1)− α|b|, if |b| < 1

γ|b|+ Z, otherwise,
(3.8)

where κ ensures L1balanced(b = 1) is a continuous function, Z is a constant and the
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association between the hyper-paramaters is:

α ln(κ+ 1) = γ. (3.9)

Having put more emphasis on inliers, Balanced L1 Loss improves the performance

especially for larger IoUs (namely, AP75 improves by %1.1).

Another approach, Kullback-Leibler Loss (KL Loss) [90], is driven by the fact that

the ground truth boxes can be ambiguous in some cases due to e.g. occlusion, shape

of the object or inaccurate labeling. For this reason, the authors aim to predict a

probability distribution for each BB coordinate rather than direct BB prediction. The

idea is similar to the networks with an additional localisation confidence associated

prediction branch [96, 130, 131, 132, 133], besides classification and regression, in

order to use the predicted confidence during inference. Differently, KL Loss, even

without its proposed NMS, has an improvement in localisation compared to the base-

line. The method assumes that each box coordinate is independent and follows a

Gaussian distribution with mean b and standard deviation σ. Therefore, in addition

to conventional boxes, a branch is added to the network to predict the standard devi-

ation, that is σ, and the loss is backpropagated using the KL divergence between the

prediction and the ground truth such that the ground truth boxes are modeled by the

dirac delta distribution centered at the box coordinates. With these assumptions, KL

Loss is proportional to:

LKL(b, σ) ∝ b2

2σ2
+

1

2
log σ2. (3.10)

They also employ gradient clipping similar to smooth L1 in order to decrease the

effect of the outliers. During NMS, a voting scheme is also proposed to combine

bounding boxes with different probability distributions based on the certainty of each

box; however, this method is out of the scope of our review. Note that the choice of

probability distribution for bounding boxes matters since the loss definition is affected

by this choice. For example, Eq. 3.10 degenerates to Euclidean distance when σ = 1.

In addition to the Lp-norm-based loss functions, there are also IoU based loss func-

tions which exploit the differentiable nature of IoU. An earlier example is the IoU

Loss [91], where an object detector is successfully trained by directly formulating a

loss based on the IoU as:

LIoU = − ln(IoU(b̂i, bi)). (3.11)
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Another approach to exploit the metric-nature of 1 − IoU(b̂i, bi) is the Bounded IoU

loss [92]. This loss warps a modified version of 1−IoU(b̂i, bi) to the smooth L1 func-

tion. The modification involves bounding the IoU by fixing all the parameters except

the one to be computed, which implies the computation of the maximum attainable

IoU for one parameter:

LBIoU(x, x̂) = 2L1smooth(1− IoUB(b̂i, bi)), (3.12)

where the bounding boxes are represented by center coordinates, width and height as

[cx, cy, w, h]. Here, we define the bounded IoU only for cx and w since cy and h have

similar definitions. We follow our convention to denote ground truth and detection

(i.e. cx for ground truth and ĉx for detection). With this notation, IoUB, the bounded

IoU, is defined as follows:

IoUB(ĉx, cx) = max

(
0,
w − 2|ĉx − cx|
w + 2|ĉx − cx|

)
, (3.13)

IoUB(ŵ, w) = min

(
ŵ

w
,
w

ŵ

)
. (3.14)

In such a setting, IoUB(b̂i, bi) ≥ IoU(b̂i, bi). Also, an IoU based loss function is

warped into the smooth L1 function in order to make the ranges of the classification

and localisation task consistent and to decrease the effect of outliers.

Motivated by the idea that the best loss function is the performance metric itself, in

Generalized Intersection over Union (GIoU) [93] showed that IoU can be directly

optimised and that IoU and the proposed GIoU can be used as a loss function. GIoU

is proposed as both a performance measure and a loss function while amending the

major drawback of the IoU (i.e. the plateau when IoU=0) by incorporating an addi-

tional smallest enclosing box of b̂i and bi as ei. In such a way, even when two boxes

do not overlap, a GIoU value can be assigned to them and this allows the function

to have non-zero gradient throughout the entire input domain rather being limited to

IoU(b̂i, bi) > 0. Unlike IoU, GIoU(b̂i, bi) ∈ [−1, 1]. Having computed E, GIoU Loss

is defined as:

GIoU(b̂i, bi) = IoU(b̂i, bi)−
A(ei)− A(b̂i ∪ bi)

A(ei)
, (3.15)

where GIoU is a lower bound for IoU, and it converges to IoU whenA(b̂i, bi) = A(ei)

and its loss form, GIoU Loss, is LGIoU(b̂i, bi) = 1 − GIoU(b̂i, bi). GIoU preserves
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the advantages of IoU, and makes it differentiable when IoU=0. On the other hand,

since positive labeled BBs have IoU larger than 0.50 by definition, this portion of the

function is never visited in practice, yet still, GIoU Loss performs better than using

IoU directly as a loss function.

A different idea proposed by Zheng et al. [94] is to add penalty terms to the con-

ventional IoU error (i.e. 1 − IoU(b̂i, bi)) in order to ensure faster and more accurate

convergence. To achieve that, in Distance IoU (DIoU) Loss, a penalty term related

with the distances of the centers of ḃi and bi is added as:

LDIoU(b̂i, bi) = 1− IoU(b̂i, bi) +
d2(ĉi, ci)

ē2
i

, (3.16)

where d(·, ·) is the Euclidean distance, ci is the center point of box bi and ēi is the

diagonal length of ei (i.e. smallest enclosing box). To further enhance their method,

LDIoU is extended with an additional penalty term for inconsistency in aspect ratios

of two boxes. The resulting loss function, coined as Complete IoU (CIoU), is defined

as:

LCIoU(b̂i, bi) = 1− IoU(b̂i, bi) +
d2(ĉi, ci)

ē2
i

+ αv, (3.17)

such that

v =
4

π2

(
arctan(

w

h
)− arctan(

ŵ

ĥ
)

)2

, (3.18)

and

α =
v

(1− IoU(b̂i, bi)) + v
. (3.19)

In this formulation, α, the trade-off parameter, ensures the importance of the cases

with smaller IoUs to be higher. In the paper, one interesting approach is to validate

faster and more accurate convergence by designing simulation scenarios since it is

not straightforward to analyse IoU-based loss functions (Section 3.4.5).

3.4.2 IoU Distribution Imbalance

Definition. IoU distribution imbalance is observed when proposals (i.e. anchor or

RoI) have a skewed IoU distribution. The problem is illustrated in Fig. 3.12(a), where
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Figure 3.12: The IoU distribution of the positive anchors for a converged RetinaNet

[18] with ResNet-50 [47] on COCO [13] before regression (a), and (b) the density of

how the IoU values are affected by regression (IoUB: before regression, IoUA: after

regression). For clarity, the density is plotted in log-scale. (c) A concise summary of

how regression changes IoUs of anchors as a function of their starting IoUs (IoUB).

Notice that while it is better not to regress the boxes in larger IoUs, regressor causes

false positives more in lower IoUs.

the IoU distribution of the anchors in RetinaNet [18] are observed to be skewed to-

wards lower IoUs. It has been previously shown that this imbalance is also observed

while training two-stage detectors [20]. Differently, we present in Fig. 3.12(b) how

each anchor is affected by regression. The rate of degraded anchors after regression

(i.e. positive anchors under the blue line) decreases towards the threshold that the

regressor is trained upon, which quantitatively confirms the claims of Cai et al. (Fig.

3.12(c)). On the other hand, the rate of the anchors that become a false positive (i.e.
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positive anchors under the red line), is increasing towards the 0.5−0.6 bin, for which

around 5% of the positive anchors are lost by the regressor (Fig. 3.12(c)). Further-

more, comparing the average IoU error of the anchors before and after regression on

a converged model, we notice that it is better off without applying regression and use

the unregressed anchors for the IoUB intervals 0.8− 0.9 and 0.9− 1.0. These results

suggest that there is still room to improve by observing the effect of the regressor on

the IoUs of the proposals (i.e. anchor or RoI).

Solutions. The Cascade R-CNN method [20] has been the first to address the IoU

imbalance. Motivated by the arguments that (i) a single detector can be optimal for

a single IoU threshold, and (ii) skewed IoU distributions make the regressor overfit

for a single threshold, they show that the IoU distribution of the positive samples

has an effect on the regression branch. In order to alleviate the problem, the authors

trained three detectors, in a cascaded pipeline, with IoU thresholds 0.5, 0.6 and 0.7

for positive samples. Each detector in the cascade uses the boxes from the previous

stage rather than sampling them anew. In this way, they show that the skewness of

the distribution can be shifted from the left-skewed to approximately uniform and

even to the right-skewed, thereby allowing the model to have enough samples for the

optimal IoU threshold that it is trained with. The authors show that such a cascaded

scheme works better compared to the previous work, such as Multi-Region CNN

[134] and AttractioNet [135], that iteratively apply the same network to the bounding

boxes. Another cascade-based structure implicitly addressing the IoU imbalance is

Hierarchical Shot Detector (HSD) [95]. Rather than using a classifier and regressor

at different cascade-levels, the method runs its classifier after the boxes are regressed,

resulting in a more balanced distribution.

In another set of studies, randomly generated bounding boxes are utilized to provide

a set of positive proposals (i.e. anchor or RoI) with balanced IoU distribution to the

second stage of Faster R-CNN. IoU-uniform R-CNN [96] adds controllable jitters

and in such a way provides approximately uniform positive proposals (i.e. anchor

or RoI) to the regressor only (i.e. the classification branch still uses the RPN RoIs).

Differently, pRoI Generator [74] trains both branches with the generated RoIs but

the performance improvement is not that significant probably because the training set

covers a much larger space than the test set. However, one significant contribution of
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Oksuz et al. [74] is, rather than adding controllable jitters, they systematically gen-

erate bounding boxes using the proposed bounding box generator. Using this pRoI

generator, they conducted a set of experiments for different IoU distributions and re-

ported the following: (i) The IoU distribution of the proposals (i.e. anchor or RoI)

has an effect not only on the regression but also on the classification performance.

(ii) Similar to the finding of Pang et al. [32], the IoU of the examples is related to

their hardness. However, contrary to Cao et al. [33], who argued that OHEM [27] has

an adverse effect when applied only to positive examples, Oksuz et al. [74] showed

that the effect of OHEM depends on the IoU distribution of the positive proposals.

When a right-skewed IoU distribution is used with OHEM, a significant performance

improvement is observed. (iii) The best performance is achieved when the IoU distri-

bution is uniform.

3.4.3 Object Location Imbalance

Definition. The distribution of the objects throughout the image matters because cur-

rent deep object detectors employ densely sampled anchors as sliding window clas-

sifiers. For most of the methods, the anchors are evenly distributed within the image,

so that each part in the image is considered with the same importance level. On the

other hand, the objects in an image do not follow a uniform distribution (Fig. 3.13),

i.e. there is an imbalance about object locations.

Solutions. Motivated by the fact that the objects are not distributed uniformly over

the image, Wang et al. [75] aim to learn the location, scale and aspect ratio attributes

of the anchors concurrently in order to decrease the number of anchors and improve

recall at the same time. Specifically, given the backbone feature maps, a prediction

branch is designed for each of these tasks to generate anchors: (i) anchor location

prediction branch predicts a probability for each location to determine whether the

location contains an object, and a hard thresholding approach is adopted based on

the output probabilities to determine the anchors, (ii) anchor shape prediction branch

generates the shape of the anchor for each location. Since the anchors vary depending

on the image, different from the conventional methods (i.e. one-stage generators and

RPN) using a fully convolutional classifier over the feature map, the authors proposed
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Figure 3.13: Distribution of the centers of the objects in the common datasets over

the normalized image.

anchor-guided feature adaptation based on deformable convolutions [136] in order to

have a balanced representation depending on the anchor size. Rather than learning

the anchors, free anchor method [39] loosens the hard constraint of the matching

strategy (i.e. a sample being positive if IoU > 0.5) and in such a way, each anchor

is considered a matching candidate for each ground truth. In order to do that, the

authors pick a bag of candidate anchors for each ground truth using the sorted IoUs

of the anchors with the ground truth. Among this bag of candidates, the proposed loss

function aims to enforce the most suitable anchor by considering both the regression

and the classification task to be matched with the ground truth.
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3.4.4 Comparative Summary

Addressing spatial imbalance problems has resulted in significant improvements for

object detectors. In general, while the methods for imbalance in regression loss and

IoU distribution imbalance yield improvement especially in the regressor branch, re-

moving the bias in the anchors in the location imbalance improves classification, too.

Despite the widespread use of the Smooth L1 loss, four new loss functions have been

proposed last year. Chen et al. [100] compared Balanced L1, IoU, GIoU, Bounded

IoU on Faster R-CNN+FPN against Smooth L1, and reported relative improvement

of 0.8%, 1.1%, 1.4 and −0.3% respectively. With the same configuration, DIoU and

CIoU losses are reported to have a relative improvement of 0.2% and 1.7% against

the GIoU baseline (without DIoU-NMS). Compared to the loss functions designed for

the foreground-background imbalance problem (i.e. Focal Loss - Section 3.2.1.2), the

relative improvement of the regression losses over Smooth L1 are smaller. We also

analysed for which cases the baseline loss function fails in Fig. 3.12(b), which can be

used as a tool to compare the pros/cons of different regression loss functions.

Cascaded structures are proven to be very useful for object detection by regulating the

IoU distribution. Cascade R-CNN, being a two-stage detector, has a relative improve-

ment of 18.2% on COCO testdev compared to its baseline Faster R-CNN+FPN with

ResNet-101 backbone (36.2 vs. 42.8). A one-stage architecture, HSD, also has a rela-

tive improvement of 34.7% compared to the SSD512 with VGG-16 backbone (28.8 vs

38.8). It is difficult to compare Cascade R-CNN and HSD since they are different in

nature (one-stage and two-stage pipelines), and their performances were reported for

different input resolutions. However, we observed that HSD with a 768 × 768 input

image runs approximately 1.5× faster than Cascade R-CNN for a 1333× 800 image

and achieves slightly lower performance on COCO testdev (42.3 vs. 42.8). One ob-

servation between these two is that, even though HSD performs worse than Cascade

R-CNN at AP50, it yields better performance for AP75 than Cascade R-CNN, which

implies that the regressor of HSD is better trained.

As for the methods that we discussed for location imbalance, guided anchoring [75]

increases average recall by 9.1% with 90% fewer anchors via learning the parameters
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of the anchors. Compared to guided anchoring, free anchor [39] reports a lower

relative improvement for average recall with 2.4% against RetinaNet with ResNet50,

however it has a 8.4% relative improvement (from 35.7 to 38.7).

3.4.5 Open Issues

This section discusses the open issues related to the spatial properties of the proposals

(i.e. anchor or RoI) and objects.

3.4.5.1 A Regression Loss with Many Aspects

Open Issue. Recent studies have proposed alternative regression loss definitions with

different perspectives and aspects. Owing to their benefits, a single regression loss

function that can combine these different aspects can be beneficial.

Explanation. Recent regression loss functions have different motivations: (i) Bal-

anced L1 Loss [32] increases the contribution of the inliers. (ii) KL Loss [90] is

motivated from the ambiguity of the positive samples. (iii) IoU-based loss functions

have the motive to use a performance metric as a loss function. These seemingly

mutually exclusive motives can be integrated to a single regression loss function.

3.4.5.2 Analyzing the Loss Functions

In order to analyse how outliers and inliers affect the regression loss, it is useful to

analyse the loss function and its gradient with respect to the inputs. To illustrate such

an analysis, in Focal Loss [18], the authors plot the loss function with respect to the

confidence score of the ground truth class with a comparison to the cross entropy

loss, the baseline. Similarly, in Balanced L1 Loss [32], both the loss function itself

and the gradients are depicted with a comparison to Smooth L1 Loss. Such an anal-

ysis might be more difficult for the recently proposed more complex loss functions.

As an example, AP Loss [37] is computed considering the ranking of the individual

examples, which is based on the confidence scores of all BBs. So, the loss depends

on the entire set rather than individual examples, which makes it difficult to plot the
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loss (and its gradient) for a single input as conventionally done. Another example is

GIoU Loss [93], which uses the ground truth box and the smallest enclosing box in

addition to the detection box. Each box is represented by four parameters (Section

3.4.1), which creates a total of twelve parameters. For this reason, it is necessary to

develop appropriate analysis methods to observe how these loss functions penalize

the examples.

3.4.5.3 Designing Better Anchors

Designing an optimal anchor set with high recall has received limited attention. The

Meta Anchor [137] method attempts to find an optimal set of aspect ratios and scales

for anchors. More recently, Wang et al. [75] have improved recall more than 9%

on COCO dataset [13] while using 90% less anchors than RPN [19]. Addressing the

imbalanced nature of the locations and scales of the objects seems to be an open issue.

Figure 3.14: The (relative) spatial distributions of 1K RoIs with IoU between 0.5

to 0.6 from the RPN (of Faster R-CNN with ResNet101 backbone) collected from

Pascal [48] during the last epoch of the training. A bias is observed around the top-

left corners of ground truths such that RoIs are densely concentrated at the top-left

corner of the normalized ground truth box.
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3.4.5.4 Relative Spatial Distribution Imbalance

Open Issue. As we discussed in Section 3.4, the distribution of the IoU between

the estimated BBs and the ground truth is imbalanced and this has an influence on

the performance. A closer inspection [74] reveals that the locations of estimated

BBs relative to the matching ground truths also have an imbalance. Whether this

imbalance affects the performance of the object detectors remains to be investigated.

Explanation. During the conventional training of the object detectors, proposals (i.e.

anchor or RoI) are labeled as positive when their IoU with a ground truth is larger than

0.5. This is adopted in order to provide more diverse examples to the classifier and the

regressor, and to allow good quality predictions at test time from noisy proposals (i.e.

anchor or RoI). The work by Oksuz et al. [74] is currently the only study that points

to an imbalance in the distribution of the relative location of BBs. Exploiting the

scale-invariance and shift-invariance properties of the IoU, they plotted the top-left

point of the RoIs from the RPN (of Faster R-CNN) with respect to a single reference

box representing the ground truth (Fig. 3.14). They reported that the resulting spatial

distribution of the top-left points of the RPN RoIs are skewed towards the top-left

point of the reference ground truth box. We see that the samples are scarce away

from the top-left corner of the reference box.
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2 3 5 3 2 1

1 2 5 4 3 2

1 2 4 3 2 2
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Ground Truth

Positive Input BB

Negative Input BB

(a) (b)

Figure 3.15: An illustration of the imbalance in overlapping BBs. The grid represents

the pixels of the image/feature map, and blue bounding box is the ground-truth. (a)

Four negative proposal boxes (i.e. anchor or RoI). (b) Two positive proposal boxes.

(c) Per-pixel number-of-overlaps of the proposal boxes. Throughout the image, the

number of sampling frequencies for the pixels vary due to the variation in the over-

lapping number of bounding boxes.
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3.4.5.5 Imbalance in Overlapping BBs

Open Issue. Due to the dynamic nature of bounding box sampling methods (Section

3.2.1), some regions in the input image may be over-sampled (i.e. regions coinciding

with many overlapping boxes) and some regions may be under-sampled (or not even

sampled at all). The effect of this imbalance caused by BB sampling methods has not

been explored.

Explanation. Imbalance in overlapping BBs is illustrated in Fig. 3.15(a-c) on an

example grid representing the image and six proposals (four negative and two posi-

tive). The number of overlapping BBs for each pixel is shown in Fig. 3.15(c); in this

example, this number ranges from 0 to 5.

This imbalance may affect the performance for two reasons: (i) The number of highly

sampled regions will play more role in the final loss functions, which can lead the

method to overfit for specific features. (ii) The fact that some regions are over-

sampled and some are under-sampled might have adverse effects on learning, as the

size of sample (i.e. batch size) is known to be related to the optimal learning rate

[138].

3.4.5.6 Analysis of the Orientation Imbalance

Open Issue. The effects of imbalance in the orientation distribution of objects need to

be investigated.

Explanation.The distribution of the orientation of object instances might have an ef-

fect on the final performance. If there is a typical orientation for the object, then

the detector will likely overfit to this orientation and will make errors for the other

orientations. To the best of our knowledge, this problem has not yet been explored.

3.5 Imbalance 4: Objective Imbalance

Definition. Objective imbalance pertains to the objective (loss) function that is min-

imized during training. By definition, object detection requires a multi-task loss in
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(a) (b)

Figure 3.16: (a) Randomly sampled 32 positive RoIs using the pRoI Generator [74].

(b) Average classification and regression losses of these RoIs at the initialization of

the object detector for COCO dataset [13] with 80 classes. We use cross entropy

for the classification task assuming that initially each class has the same confidence

score, and smooth L1 loss for regression task. Note that right after initialization, the

classification loss has more effect on the total loss.

order to solve classification and regression tasks simultaneously. However, different

tasks can lead to imbalance because of the following differences: (i) The norms of the

gradients can be different for the tasks, and one task can dominate the training (Fig.

3.16). (ii) The ranges of the loss functions from different tasks can be different, which

hampers the consistent and balanced optimisation of the tasks. (iii) The difficulties of

the tasks can be different, which affects the pace at which the tasks are learned, and

hence hinders the training process [139].

Fig. 3.16 illustrates a case where the loss of the classification dominates the overall

gradient.

Solutions. The most common solution is Task Weighting which balances the loss

terms by an additional hyper-parameter as the weighting factor. The hyper-parameter

is selected using a validation set. Naturally, increasing the number of tasks, as in the

case of two-stage detectors, will increase the number of weighting factors and the

dimensions of the search space (note that there are four tasks in two-stage detectors
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and two tasks in one-stage detectors).

An issue arising from the multi-task nature is the possible range inconsistencies

among different loss functions. For example, in AP Loss, smooth L1, which is in

the logarithmic range (since the input to the loss is conventionally provided after

applying a logarithmic transformation) with [0,∞), is used for regression while AP

Loss is between 0 and 1. Another example is the GIoU Loss [93], which is in the [0, 2]

range and used together with cross entropy loss. The authors set the weighting factor

of GIoU Loss to 10 and regularization is exploited to balance this range difference

and ensure balanced training.

Since it is more challenging to balance terms with different ranges, it is a better strat-

egy to first make the ranges comparable.

A more prominent approach to combine classification and regression tasks is Classification-

Aware Regression Loss (CARL) [33], which assumes that classification and regres-

sion tasks are correlated. To combine the loss terms, the regression loss is scaled by

a coefficient determined by the (classification) confidence score of the bounding box:

LCARL(x) = c′iL1smooth(x), (3.20)

where c′i is a factor based on pi, i.e., an estimation from the classification task. In this

way, regression loss provides gradient signals to the classification branch as well, and

therefore, this formulation improves localisation of high-quality (prime) examples.

An important contribution of CARL is to employ the correlation between the classifi-

cation and regression tasks. However, as we discuss in Section 3.5.2, this correlation

should be investigated and exploited more extensively.

Recently, Chen et al. [63] showed that cumulative loss originating from cross en-

tropy needs to be dynamically weighted since, when cross entropy loss is used, the

contribution rate of individual loss component at each epoch can be different. To

prevent this imbalance, the authors proposed Guided Loss which simply weights the

classification component by considering the total magnitude of the losses as:

wregLReg
Lcls

. (3.21)

The motivation of the method is that regression loss consists of only foreground ex-

79



amples and is normalized only by number of foreground classes, therefore it can be

used as a normalizer for the classification loss.

3.5.1 Comparative Summary

Currently, except for linear task weighting, there is no method suitable for all archi-

tectures alleviating objective imbalance, and unless the weights of the tasks are set

accordingly, training diverges [63]. While many studies use equal weights for the

regression and classification tasks [24, 18], it is also shown that appropriate linear

weighting can lead to small improvements on the performance [100]. However, an

in-depth analysis on objective imbalance is missing in the literature.

CARL [33] is a method to promote examples with higher IoUs, and in such a way,

1.6% relative improvement is achieved compared to prime sampling without CARL

(i.e. from 37.9 to 38.5). Another method, Guided Loss [63], weights the classifica-

tion loss dynamically to ensure balanced training. This method achieves a similar

performance with the baseline RetinaNet, without using Focal Loss. However, their

method does not discard the linear weighting, and they search for the optimal weight

for different architectures. Moreover, the effect of Guided Loss is not clear for the

two-stage object detectors, which conventionally employ cross entropy loss.

3.5.2 Open Issues

Open Issue. Currently, the most common approach is to linearly combine the loss

functions of different tasks to obtain the overall loss function (except for classification-

aware regression loss in [33]). However, as shown in Fig. 3.18(a-c), as the proposal

box (i.e. anchor or RoI) is slid over the image, both classification and regression

losses are affected, implying their dependence. This suggests that current linear

weighting strategy may not be able to address the imbalance of the tasks that is related

to (i) the loss values and their gradients, and (ii) the paces of the tasks.

Explanation. The loss function of one task (i.e. classification) can affect the other task

(i.e. regression). To illustrate, AP Loss [37] did not modify the regression branch;
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however, AP75 increased around 3%. This example shows that the loss functions for

different branches (tasks) are not independent (see also Fig. 3.18). This interdepen-

dence of tasks has been explored in classification-aware regression loss by Cao et

al. [33] (as discussed in Section 3.5) to a certain extent. Further research is needed

for a more detailed analysis of this interdependence and fully exploiting it for object

detection.

Some studies in multi-task learning [139] pointed out that learning pace affects per-

formance. With this in mind, we plotted the regression and classification losses of

the RPN [19] during training on the Pascal VOC dataset [48] in Fig. 3.17. We ob-

serve that the classification loss decreases faster than the regression loss. Analyzing

and balancing the learning paces of different tasks involved in the object detection

problem might be another fruitful research direction.

Figure 3.17: Paces of the tasks in RPN (with Resnet-101 [47] backbone) [19] on

Pascal VOC 2007 training set [48].

3.6 Open Issues for All Imbalance Problems

In this section, we identify and discuss the issues relevant to all imbalance problems.

For open issues pertaining to a specific imbalance problem, please see its correspond-

ing section in the text.
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Ground Truth
Positive Example

(a) (b) (c)

Negative Example

Figure 3.18: An example suggesting the necessity of considering different imbalance

problems together in a unified manner. Blue, green and red colors indicate ground-

truth, positive example (prediction) and negative examples, respectively. The larger

example (i.e. the one with higher IoU with the blue box) in (a) is shifted right. In (b),

its IoU is significantly decreased and it eventually becomes a negative example in (c).

This example shows the interplay between class imbalance, scale imbalance, spatial

imbalance and objective imbalance by a change in BB positions.

3.6.1 A Unified Approach to Addressing Imbalance

Open Issue. One of the main challenges is to come up with a unified approach that

addresses all imbalance problems by considering the inter-dependence between them.

Explanation. We illustrate this inter-dependency using a toy example in Fig. 3.18. In

this figure, we shift a proposal box (i.e. anchor or RoI) with a high IoU (Fig. 3.18(a))

to worse qualities in terms of IoU in two steps (Fig. 3.18(b-c)) and observe how this

shift affects the different imbalance problems. For the base case in Fig. 3.18(a), there

are two positive bounding boxes (relevant for class imbalance) with different scales

(relevant for scale imbalance), loss values (relevant for objective imbalance) and IoUs

(relevant for BB imbalance). Shifting the box to the right, we observe the following:

• In Fig. 3.18(b), we still have two positives, both of which now have less IoU

with the ground truth (compared to (a)).

This leads to the following: (i) There are more hard examples (considering

hard example mining [27, 32]), and less prime samples [33]. For this reason,

the methods for class imbalance are affected. (ii) The scales of the RoIs and
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ground truth do not change. Considering this, the scale imbalance seems not

affected. (iii) Objective imbalance is affected in two ways: Firstly, the shifted

BB will incur more loss (for regression, and possibly for classification) and

thus, become more dominant in its own task. Secondly, since the cumulative

individual loss values change, the contribution to the total loss of the individual

loss values will also change, which implies its effect on objective imbalance.

(iv) Finally, both BB IoU distribution and spatial distribution of the positive

examples will be affected by this shift.

• In Fig. 3.18(c), by applying a small shift to the same BB, its label changes.

This leads to the following: (i) There are less positive examples and more nega-

tive examples. The ground truth class loses an example. Note that this example

evolves from being a hard positive to a hard negative in terms hard example

mining [27, 32], and the criterion that the prime sample attention [33] consid-

ers for the example changed from IoU to classification score. For this reason,

in this case, the methods involving class imbalance and foreground-foreground

class imbalance are affected. (ii) A positive RoI is removed from the set of

RoIs with similar scales. Therefore, there will be less positive examples with

the same scale, which affects scale imbalance. (iii) Objective imbalance is af-

fected in two ways: Firstly, the now-negative BB is an additional hard example

in terms of classification possibly with a larger loss value. Secondly, the shifted

example is totally free from the regression branch, and moved to the set of hard

examples in terms of classification. Hence, the contribution of the regression

loss to the total loss is expected to decrease, and the contribution of classifica-

tion would increase. (iv) Finally, the IoU distribution of the positive examples

will be affected by this shift since a positive example is lost.

Therefore, the aforementioned imbalance problems have an intertwined nature, which

needs to be investigated and identified in detail to effectively address all imbalance

problems.
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3.6.2 Measuring and Identifying Imbalance

Open Issue. Another critical issue that has not been addressed yet is how to quantify

or measure imbalance, and how to identify imbalance when there is one. We identify

three questions that need to be studied:

1. What is a balanced distribution for a property that is critical for a task? This

is likely to be uniform distribution for many properties like, e.g. class distribu-

tion. However, different modalities may imply a different concept of balance.

For example, OHEM prefers a skewed distribution around 0.5 for the IoU dis-

tribution; left-skewed for the positives and right-skewed for the negatives.

2. What is the desired distribution for the properties that are critical for a task?

Note that the desired distribution may be different from the balanced distribu-

tion since skewing the distribution in one way may be beneficial for faster con-

vergence and better generalization. For example, online hard negative mining

[27] favors a right-skewed IoU distribution towards 0.5 [32], whereas prime

sample attention prefers the positive examples with larger IoUs [33] and the

class imbalance methods aim to ensure a uniform distribution from the classes.

3. How can we quantify how imbalanced a distribution is? A straightforward

approach is to consider optimal transport measures such as the Wasserstein

distance; however, such methods would neglect the effect of a unit change (im-

balance) in the distribution on the overall performance, thereby jeopardizing a

direct and effective consideration (and comparison) of the imbalance problems

using the imbalance measurements.

3.6.3 Labeling a Bounding Box as Positive or Negative

Open Issue. Currently, object detectors use IoU-based thresholding (possibly with

different values) for labeling an example as positive or negative and there is no con-

sensus on this (i.e. Fast R-CNN [22], Retina Net [18] and RPN [19] label proposals

with IoUs 0.5, 0.4 and 0.3 as negatives respectively.). However, a consensus on this

is critical since labeling is very relevant to determining whether an example is a hard
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example.

Explanation. Labeling bounding boxes is highly relevant to imbalance problems since

this is the step where the set of all bounding boxes are split as positives and negatives

in an online manner. Of special concern are the bounding boxes around the decision

boundary, which are typically considered as hard examples, and a noisy labeling over

them would result in large gradients in opposite directions. In other words, in order

to define the hard negatives reliably, the number of outliers should be as small as

possible. For this reason, consistent labeling of the proposals (i.e. anchor or RoI) as

positive or negative is a prerequisite of the imbalance problems in object detection.

Currently the methods use a hard IoU threshold (generally 0.5) to split the examples;

however, Li et al. [68] showed that this scheme results in a large number of noisy

examples. In Fig. 3.19, we illustrate two proposals that can be misleadingly labeled

as positive; and once they are labeled as positive, it is likely that they will be sampled

as hard positives:

• The estimated (positive) box for the bicycle (green) has two problems: It has

occlusion (for the bicycle), and a big portion of it includes another object (a

person). For this reason, during training, this is not only a hard example for

the bicycle class but also a misleading example for the person class in that this

specific example will try to suppress the probability of this box to be classified

as person.

• The estimated (positive) box for the person class (green) consists of black pix-

els in most of it. In other words, the box does hardly include any visually

descriptive part for a person. For this reason, this is a very hard example which

is likely to fail in capturing the ground truth class well.

3.6.4 Imbalance in Bottom-Up Object Detectors

Open Issue. Bottom-up detectors [26, 40, 97, 140] adopt a completely different ap-

proach to object detection than the one-stage and the two-stage detectors. Bottom-up

detectors might share many of the imbalance problems seen in the top-down detec-
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Figure 3.19: An illustration on ambiguities resulting from labeling examples. The

blue boxes denote the ground truth. The green boxes are the estimated positive boxes

with IoU > 0.5. The input image is from the COCO [13].

tors, and they may have their own imbalance issues as well. Further research needs

to be conducted for (i) analyzing the known methods addressing imbalance problems

in the context of bottom-up object detectors, and (ii) imbalance problems that are

specific to bottom-up detectors.

Explanation. Addressing imbalance issues in bottom-up object detectors has received

limited attention. CornerNet [26] and ExtremeNet [97] use focal loss [18] to address

foreground-background class imbalance, and the hourglass network [109] to compen-

sate for the scale imbalance. On the other hand, use of hard sampling methods and

the effects of other imbalance problems have not been investigated. For the top-down

detectors, we can recap some of the findings: from the class imbalance perspective,

Shrivastava et al. [27] show that the examples with larger losses are important; from

the scale imbalance perspective, different architectures [32, 82, 88] and training meth-

ods [30, 31] involving feature and image pyramids are proven to be useful and finally

from the objective imbalance perspective, Pang et al. [32] showed that smooth L1

loss underestimates the effect of the inliers. Research is needed to come up with such

findings for bottom-up object detectors.

3.7 Conclusion

In this chapter, we provided a thorough review of the imbalance problems in ob-

ject detection. In order to provide a more complete and coherent perspective, we

introduced a taxonomy of the problems as well as the solutions for addressing them.
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Following the taxonomy on problems, we discussed each problem separately in detail

and presented the solutions with a unifying yet critical perspective.

In addition to the detailed discussions on the studied problems and the solutions, we

pinpointed and presented many open issues and imbalance problems that are critical

for object detection. In addition to the many open aspects that need further attention

for the studied imbalance problems, we identified new imbalance issues that have not

been addressed or discussed before.

With this review and our taxonomy functioning as a map, we, as the community, can

identify where we are and the research directions to be followed to develop better

solutions to the imbalance problems in object detection.
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CHAPTER 4

BOUNDING BOX GENERATOR TO ANALYSE IMBALANCE PROBLEMS

IN VISUAL DETECTION TASKS

In this chapter, we present our Bounding Box Generator as a basic operation to devise

analysis tools for object detection. Then based on our Bounding Box Generator, we

devise a Positive RoI Generator to analyse imbalance problems for the second stage

of Faster R-CNN. This chapter is based on our work [74],

• Kemal Oksuz, Baris Can Cam, Emre Akbas* and Sinan Kalkan∗, “Generating

Positive Bounding Boxes for Balanced Training of Object Detectors”, IEEE

Winter Conference on Applications of Computer Vision (WACV), 2020.

We only make minor changes to fit the text appropriately in the context of this thesis.

4.1 Introduction

An important challenge in object detection is class imbalance [18, 27, 32, 33, 68]:

even from a single image, an infinite number of negative examples can be sampled,

in contrast to only a limited set of positive RoIs (regions-of-interest). Naturally, this

leads to significant imbalance between negatives and positives. Class imbalance also

exists within foreground classes.

A prominent solution to the foreground-background class imbalance is to have two

stages [19, 22, 23]: The first stage estimates regions (i.e., RoIs) that are likely to

contain objects, significantly discarding background samples, and the second-stage
∗ Equal contribution for senior authorship.
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Figure 4.1: (a) An illustration of Bounding Box (BB) Generation. Given a reference

box (in blue) and an IoU threshold T , a BB having at least T IoU is generated (drawn

in green). (b) An illustration of training an object detector with positive region-of-

interests. Given distribution requirements on foreground classes and BBs, we gen-

erate positive RoIs using the BB generator. Negative RoIs are still generated by the

region proposal network.

classifies these regions into objects, and also fine-tunes the coordinates of the bound-

ing boxes. Other solutions generally employ sampling with hard constraints (e.g.,

online hard example mining [27], Libra RCNN [32]) or soft constraints (e.g., focal

loss [18], harmonizing gradients [68]).

The foreground-foreground class imbalance problem, i.e., the imbalance in the num-

ber of examples pertaining to different positive classes at the image, dataset or mini-
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batch levels, has not attracted as much attention. In addition, the IoU distribution of

the RoIs generated by the region proposal network (RPN) [19] is imbalanced [20],

which biases the BB regressor in favor of the IoU that the distribution is skewed

towards. We call this imbalance problem as IoU distribution imbalance (see also

Section 3.4.2 for further discussion). Addressing these problems requires a careful

analysis of the positive RoIs.

In this chapter, we analyse and address foreground-foreground class imbalance and

IoU distribution imbalance by actively generating BBs. We first propose the “Bound-

ing Box Generator”, a method that can generate an arbitrary BB overlapping with

a reference box with an IoU larger than a given threshold (Fig. 4.1(a)). Using the

BB generator, we develop a positive RoI (pRoI) generator that can produce RoIs

conforming to desired foreground class, IoU and relative spatial distributions (Fig.

4.1(b)). Considering that there is a correlation between the hardness of an example

and its IoU [32], the pRoI generator can generate (rather than sample) not only posi-

tive samples, but also samples with any desired property such as hard examples [27]

or prime samples [33].

Devised based on Bounding Box Generator, our pRoI generator can perform several

analyses and improvements. Specifically, we (i) show that IoU and foreground class

distributions affect performance, (ii) make a comparative analysis for RPN RoIs and

(iii) improve the performance of Faster RCNN for IoU intervals where RPN is not

able to generate enough samples.

Finally, we devise an online, foreground-balanced (OFB) sampling method which

considers the imbalance among the foreground classes dynamically within a training

batch based on multinomial sampling.

Contributions. Overall, our main contributions in this chapter are as follows:

1. Generators: (i) A BB generator to generate BBs for a given IoU threshold and

(ii) a positive RoI generator to generate RoIs with desired foreground class, IoU and

relative spatial distributions.

2. Imbalance Problems and Analysis: Using our pRoI generator, we show that IoU

distribution and foreground-foreground class imbalance within a training batch affect
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the performance of the object detectors. We also provide an analysis of RPN RoIs

and show that the effect of the hard examples depends on the IoU distribution of the

BBs.

3. Practical Improvements: We train a detection network using our pRoI generator,

which increases the amount and the diversity of the positive examples especially for

the larger IoUs, and show that the performance improves compared to the standard

training (e.g. for IoU = 0.8, mAP@0.8 improves by 10.9% for Pascal VOC). We

also train the conventional detection pipeline by using the proposed OFB sampling,

and improve the performance.

4.2 Related Work

Deep Object Detectors: We can group deep object detectors into two: One-stage

methods and two-stage methods. While one-stage methods [17, 18, 24, 25] predict

the object categories and their BBs directly from anchors, two-stage methods [19, 21,

22, 23] first estimate a set of RoIs from anchors and then predict objects from these

RoIs in the second stage. Both approaches use a deep feature extractor [47, 141],

optionally followed by steps like feature pyramid networks [29, 82, 85, 88].

Our BB sampling approach is more suitable for the second stage of the two-stage

methods since one-stage detectors have structural constraints owing to the fact that

each output of a one-stage detector corresponds to a predefined anchor having fixed

location, shape and scale. For this reason, an additional module is required to employ

our generator. However, having balanced IoU and foreground class distributions are

relevant for any object detection pipeline since any object detector needs to deal with

BBs even if they are estimated or fixed (in the case of anchors).

Class Imbalance in Object Detection: Following Oksuz et al. [142], we catego-

rize the class imbalance problem for the deep object detectors into two: foreground-

background and foreground-foreground class imbalance.

Foreground-background class imbalance has attracted more attention with hard sam-

pling, soft sampling and generative approaches. In hard sampling methods, certain
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samples are shown more to the network. This can be performed via random sampling

[19, 23], or by relying on “sample usefulness” heuristics as in hard-example mining

[24, 27, 32] and prime sampling [33]. Hard-example mining methods usually assume

that examples with higher loss are more difficult to learn, and therefore, they train a

network more with such examples. This approach is adopted for negative samples

in SSD [24], while a more systematic approach considering both the positive and

negative samples is proposed in online hard example mining (OHEM – [27]). An al-

ternative hardness definition was proposed in Libra R-CNN [32] based on a sample’s

IoU, and a solution was proposed using hard example mining using BB IoUs without

computing the loss for the entire set. A recent interesting method, “prime sampling"

[33], asserts that positive samples with higher IoUs are more representative and pro-

posed ranking the positive samples based on its IoU with the ground truth, while still

showing that hard example mining for the negative class works well. BB IoU imbal-

ance is addressed by Cascade R-CNN [20] by employing cascaded detectors in such a

way that a later-stage detector is trained by a distribution skewed towards higher IoU.

In soft sampling, a weight is assigned to each sample rather than performing a discrete

(hard) selection of samples. Prominent examples include focal loss [18], which pro-

motes hard examples; prime sampling [33], which assigns more weight to examples

with higher IoUs; and finally gradient harmonizing mechanism [68], which assigns

lower weights to easy negatives and suppresses the effect of the outliers.

The generative methods address imbalance with a different perspective by introduc-

ing generated samples. Example approaches include generating hard examples with

various deformations and occlusion [71] and generating synthetic examples [143].

Foreground-foreground class imbalance is critical as well. Kuznetsova et al. [98]

showed that object detection datasets are highly imbalanced also for foreground classes.

The only method to consider the problem at the dataset level handcrafts a similar-

ity measure, and based on the measure clusters the classes to have a more balanced

training [28]. In the classification domain where there is no background class, this

imbalance is studied more [61, 62] by, e.g., performing class-aware sampling [144].

However, these methods are not directly applicable for two-stage object detectors be-

cause the second stage’s input is very dynamic since it depends on RoIs estimated by
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the first stage. Despite this difference, class-aware sampling is said to be adopted by

[82], however no comparison is presented for balanced and imbalanced training from

the object detection perspective.

Our ideas in this paper are relevant for both foreground-background and foreground-

foreground class imbalance. One can generate any number of positive RoIs to ad-

dress the foreground-background imbalance, and the generated set can also be chosen

equally from each class to address the foreground-foreground imbalance. Among the

three types of methods mentioned above, we classify our approach as a generative

method. Since the end-to-end training pipeline is not disrupted (Fig. 4.1(b)), any

hard sampling method [27, 32] can also be simulated. In addition, we directly ad-

dress foreground-foreground class imbalance by online foreground balanced (OFB)

sampling. Its main difference from the previously proposed class-aware sampling

[144] is that while they use a static dataset, our OFB sampling is able to handle the

dynamic nature of the RoIs (i.e. the batch depends on the sampled RoIs at each itera-

tion) owing to the proposal network.

4.3 The Generators

In this section, we describe the methods for generating bounding boxes and balanced

positive RoIs.

4.3.1 Bounding Box Generator

Given a reference bounding boxB = [x1, y1, x2, y2] and a threshold T , the goal of the

BB generator is to determine a new box B̄ = [x̄1, ȳ1, x̄2, ȳ2] such that IoU(B, B̄) ≥ T .

To generate such a box, we propose a 2-step algorithm presented in Algorithm 1 and

illustrated in Fig. 4.2. The first step (lines 3-4) finds the polygon1 that computes

the feasible space for top-left point of the generated BB (TL(B̄) = (x̄1, ȳ1)), which

satisfies the desired IoU, and samples a point in this polygon. The second step (lines

6-7) takes into account the sampled TL(B̄) and, similar to Step 1, determines a feasi-

1 Note that the shape is not strictly a polygon; however, we approximate it as one at regular small intervals,
and therefore, we call it a polygon for the sake of simplicity.
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(a) (b)

Figure 4.2: (a,b) Applying Algorithm 1 on the blue BB (B) with T = 0.5. Red

polygons denote boundaries for top-left and bottom-right points that can be sampled

with an IoU larger than T = 0.5. Red dots are sampled points, and green box is the

generated box (B̄) with IoU = 0.5071.

Algorithm 1 Bounding Box Generator. See Section 4.3.1 and the Appendix B for the

definitions of the functions.
1: procedure GENERATEBB(B, T )

2: # Step-1: Find top-left corner

3: TLPoly ← findTLFeasibleSpace(B, T )

4: TL(B̄)← samplePolygon(TLPoly)

5: # Step-2: Find bottom-right corner

6: BRPoly ← findBRFeasibleSpace(B, T,TL(B̄))

7: BR(B̄)← samplePolygon(BRPoly)

8: return [TL(B̄),BR(B̄)]

9: end procedure

ble space for bottom-right corner, then, samples bottom right-point of the generated

bounding box (BR(B̄)). This order leads to a non-isotropic distribution with respect

to the reference box. To make it isotropic, we can also sample in the reverse order:

i.e. sample BR first then TL. We then randomly choose the order, before sampling.

Fig. 4.3 superimposes 1000 generated boxes with T = 0.6.

The following two sections discuss how the feasible space is computed (i.e. find-
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Figure 4.3: 1K generated boxes (shown with red) by Algorithm 1 for reference box

drawn in blue (B) and IoU threshold T = 0.6.

ing top left feasible space) and how a point can be sampled within a polygon (i.e.

sampling within a polygon). See the Appendix B for bottom-right point, BR(B̄).

4.3.1.1 Determining Feasible Space for the Desired IoU

findTLFeasibleSpace(B, T ) is the function determining the feasible set of points that

can be the top left point of a box ensuring the desired IoU. In order to find the set of

these feasible points (i.e. TL(B̄)) that satisfy Eq. 2.2, we assume that BR(B̄) =

BR(B) and manipulate Eq. 2.2, otherwise, some feasible points are excluded in the

feasible top left space. Even though BR(B̄) is fixed, there are still two unknown

variables x̄1 and ȳ1. That’s why, we first bound one of these two variables and then

find the value of the unbounded variable by moving within the limits of the bounded

variable with some precision (we use 0.0001 as precision). Since the definition of the

IoU(B, B̄) is different in each of the four regions depicted in Fig. 4.4(a) due to the

max and min operations, an equation is to be derived for each region.

Denoting the minimum and maximum bounds of x̄1 in Region I by xImin and xImax
respectively, we bound the values in x axis. It is obvious that xImin = x1 due to the

boundary of Region I. To find xImax, we manipulate the definition of IoU (Eq. 2.2) by

exploiting that ȳ1 = y1 for xImax, which yields:

xImax = x2 − (x2 − x1)× T. (4.1)
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(a) (b)

Figure 4.4: (a) The regions around TL(B) and BR(B) are splitted into four each.

Red and green dashed lines split the top left and bottom right regions respectively.

The numbers label the splitted regions.), (b) In the execution of the sample poly-

gon function for T = 0.75, green dashed box is the enclosing box for the TL space

polygon.

Having determined the boundaries for x̄1, now we derive a function that determines ȳ1

given x̄1. Finally, moving within the bounds yields x̄1, ȳ1 pairs satisfying IoU(B, B̄) =

T when BR(B̄) = BR(B). In region I, note that A(B ∩ B̄) does not rely on ȳ1 (i.e.

A(B ∩ B̄) = (x2 − x̄1)(y2 − y1)). Bringing these together, ȳ1 can be defined as (see

Appendix B for the entire derivation of xImax and ȳ1):

ȳ1 = y2 −
A(B∩B̄)

T
+ A(B ∩ B̄)− A(B)

(x2 − x̄1)
. (4.2)

Here, we only show the derivation steps for Region I and present the equations for all

regions in Appendix B. Combining the points in all these regions yields the polygon

limiting feasible region with IoU ≥ T .

4.3.1.2 Controlling the Relative Spatial Distribution of the Boxes

samplePolygon(TLPoly) function determines the BB spatial distribution. We fol-

low rejection sampling [145] in such a way that a point is proposed by the proposal
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distribution until it hits the inside of the polygon. Accordingly, the proposal distri-

bution determines the BB spatial distribution. Fig. 4.4(b) presents an example for

spatial uniform distribution for the top-left space polygon with T = 0.75. We sam-

ple a point in the rectangle uniformly, which corresponds basically to generating two

uniform numbers within a range. If the point is in the polygon, then it is accepted,

else a new point is proposed until it is inside the polygon. Note that different proposal

distributions lead to different relative spatial distributions for the generated BBs.

4.3.2 pRoI Generator: Training by Generated BBs

This section provides an application of our BB generator for generating positive RoIs

for training a two-stage object detector. By applying our BB generator to the ground-

truth boxes, we can generate positive RoIs with desired characteristics. This enables

us to (i) analyse how the performance of Faster R-CNN is affected by the properties

of the positive RoIs and (ii) improve the performance for IoU intervals where RPN is

not able to generate enough samples.

Algorithm 2 Positive RoI Generator. See Section 4.3.2 and Appendix B for the defi-

nitions of functions fgBalancedRoIAlloc and genRoIs.
1: procedure GENERATEPROI(GTs, ψIoU ,WIoU , RoINum)

2: perGtRoI = fgBalancedRoIAlloc(GTs,RoINum)

3: RoIs = genRoIs(GTs, perGtRoI, ψIoU ,WIoU , RoINum)

4: return RoIs

5: end procedure

The method, “Positive RoI Generator” (pRoI Generator), described in Algorithm 2,

can control several different characteristics of the set of positive RoIs:

• fgBalancedRoIAlloc() first dividesRoINum by the number of different classes

in the given ground truth set, GTs, to determine the allocated box number per

class, and then shares this value among each example of the same class equally.

As a result, fgBalancedRoIAlloc() determines the number of boxes to be gen-

erated for each ground truth box in GTs.
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• Secondly, given the allocated number of boxes for each ground truth, genRoIs()

iteratively uses BB generator as a subroutine to provide a set ofRoINum RoIs.

In this step, the IoU distribution requirement is determined by the inputs ψIoU ,

the base of the IoU bins and the weight of the each bin denoted by WIoU . WIoU

is basically a multinomial distribution over the bins determined by ψIoU .

An important benefit of pRoI generator is that training with the generated RoIs has no

impact on the gradient flow for the training process. At each training iteration, RPN

generates a set of RoIs among which we discard the positive ones and use the positive

RoIs generated by the proposed method (Fig. 4.1). Using our pRoI generator, we can

address the imbalance problems regarding RoIs at three different levels:

(1) Foreground-foreground class imbalance, which occurs when a dataset or mini-

batch (or batch) contains different numbers of positive examples from different classes.

To illustrate on a batch, an image (used as a batch) from PASCAL dataset [48] in-

cludes 4 bottles, 2 persons, 2 dining tables and 1 chair. In such a case, having equal

number of RoIs per instance may lead the model to be biased in favor of the bottle

class while ignoring the chair class. In our pRoI Generator, fgBalancedRoIAlloc()

function allocates the same number of RoIs for each class within the batch.

(2) IoU distribution imbalance, which occurs when the positive RoIs have a skewed

IoU distribution (Fig. 4.5). It has been shown that the hardness of a RoI is related to

its IoU [32] and also the regressor overfits to RoIs which has IoU around 0.5 when

the distribution of the RPN proposals is concentrated towards 0.5 [20]. Thus, these

recent findings imply that the IoU distribution has an important effect on training. As

aforementioned, genRoIs() is able to control the IoU distribution of the BBs.

(3) Relative spatial imbalance, which occurs when the BBs intersect significantly

and a diverse set of examples can not be provided to the detection network. This level

of imbalance is controlled in our pRoI generator in the subroutine BB generator as

discussed in Section 4.3.1.2.
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4.4 Experimental Setup

Dataset and Implementation Details: We evaluate our generative methods on Faster

R-CNN in two different settings: (i) on Pascal VOC 2007 [48] with backbone ResNet-

101 following the implementation and training in [146] with batch size 1 image on 1

GPU, and (ii) on COCO [13] with backbone ResNet-50 following the implementation

and training in [100] with batch size 2 images/GPU on 2 GPUs. During training, 32

positive, and 96 negative RoIs are used from each image in the batch.

Performance Measures: We exhaustively search for the best AP at IoU=0.50 (AP50)

and optimal LRP (oLRP) error [107] values over epochs and report them. oLRP is a

recently introduced metric for object detection, which represents recall, precision and

average tightness of the BBs. Note that AP is a higher-is-better measure, while oLRP

is an error metric and thus, it is a lower-is-better measure.

RoI Sources: In addition to RoIs output by RPN, we use the RoIs generated by our

pRoI generator, with a given distribution, during the analysis and training. The differ-

ent distributions are obtained by controlling WIoU in Algorithm 2. Unless otherwise

stated, we set ψIoU = [0.5, 0.6, 0.7, 0.8, 0.9] and RoINum = 32. We train these RoI

sources with and without foreground balanced sampling in order to see the effects of

different imbalance problems on different RoI sources. The results are presented in

Table 4.1.

4.5 Imbalance Problems and Analysis of RPN RoIs

In this section, using our pRoI generator, we show that IoU and foreground class

distributions affect performance, simulate a sampling method and analyse the relative

spatial distribution of RPN RoIs.

4.5.1 IoU Distribution Imbalance

Our BB generator method (Algorithm 1) samples boxes for a given IoU threshold,

spatially uniformly. It does not impose an upper bound for the IoUs of the sampled
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Figure 4.5: IoU distribution of different RoI Sources.

Table 4.1: Effect of the batch properties for generated positive samples (see Fig. 4.5

for different RoI sources) on Pascal VOC 2007. We trained each RoI source with

balanced foreground-foreground distribution and simulating OHPM. RS, Unif, LS

and Base respectively denote pRoI-Right Skew, pRoI-Uniform, pRoI-Left Skew and

pRoI-Base IoU=0.5 distributions. FGB refers to foreground balanced generation of

RoIs.

RoI Distrib. FGB? OHPM oLRP ↓ oLRPLoc ↓ oLRPFP ↓ oLRPFN ↓ AP50 ↑

No No 64.6 21.4 18.7 29.8 74.9

RS Yes No 64.5 21.5 18.7 29.5 75.3

Yes Yes 60.4 19.5 16.8 27.2 77.4

No No 61.3 19.5 17.9 28.5 76.3

Unif. Yes No 61.1 19.5 17.0 28.8 76.9

Yes Yes 59.9 19.2 16.0 27.6 77.8

No No 60.4 19.1 16.9 28.3 77.0

LS Yes No 60.3 19.0 17.3 28.2 77.2

Yes Yes 60.7 19.3 17.7 27.8 76.9

No No 61.5 19.7 17.2 28.8 76.6

Base Yes No 61.4 19.3 16.3 29.4 76.7

Yes Yes 61.2 19.7 16.6 28.6 76.7
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boxes. Therefore, in order to analyse the density of the different IoUs for the positive

samples, we uniformly generate 100K boxes for each IoU distribution type and plot

the distribution of the generated boxes in Fig. 4.5. Note that training a detector with

different IoU distributions of positive examples affects the resulting test performance

(Table 4.1), which implies the effect of IoU distribution imbalance.

From Fig. 4.5, we observe the following: (1) The distribution of the boxes with

baseIoU = 0.5 is highly biased towards 0.5 and includes very low samples with

higher IoUs. This implies that the proportion of the boxes with IoU > 0.9 is far too

low than that of the boxes with 0.6 > IoU > 0.5 when T = 0.5. (2) RPN RoIs

follow a similar tendency to the sampled boxes with baseIoU = 0.5 since the RoIs

are based on anchors, which are uniformly distributed with a fixed set of boxes on the

image. Thanks to the RPN regressor, the IoU distribution improves compared to the

distribution of the sampled boxes with baseIoU = 0.5. On the other hand, this bias

towards 0.5 is previously argued to make the regressor overfit for smaller IoUs [20].

(3) RPN is able to provide hard positive examples inherently; however, the number of

prime samples (i.e. examples with larger IoUs) is quite low. This is critical since it is

shown that prime sampling performs better than hard positive mining [33].

4.5.2 Foreground-Foreground Class Imbalance

We observe that, for each RoI source, addressing foreground-foreground imbalance

(FGB=Yes) improves performance in terms of both AP and oLRP, especially for

the right skew and uniform cases (Table 4.1). Moreover, addressing foreground-

foreground class imbalance does not seem to affect the localisation error (oLRPLoc)

but improves the classification performance since AP50, oLRPFP and oLRPFN get

better (except for the left-skew case). Therefore, we conclude foreground-foreground

class imbalance can also be alleviated by employing methods in the batch level.

4.5.3 Effect of Online Hard Positive Mining

Here we demonstrate another useful use-case of our pRoI generator by simulating

OHEM [27] on positive examples. OHEM chooses the positive and negative exam-
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ples with the highest loss values after applying NMS to the examples to preserve

example diversity. A recent study [32] showed that the IoU and the hardness of an

example are correlated. On the other hand, another study [33] proposed an opposite

perspective to the OHEM based on prioritizing “prime samples”, i.e. samples with

high IoUs. To be more clear, OHEM [27] implies preferring positive examples with

IoUs just above 0.5, while prime sampling asserts that the higher the IoU, the better

the example. To make an analysis on the positive examples, we simulate OHEM by

(i) initially generating 128 BBs by pRoI generator, (ii) applying NMS using loss value

of an example, (iii) finally selecting the ones with the larger loss values. We coin this

as online hard positive mining (OHPM).

In our experiments, we observe that the effect of the hard examples depends on the

IoU distribution of the RoIs and high-quality samples are required during training: In

Table 4.1, when OHPM is applied, uniform and right-skew distributions, which have

more difficult examples due to their distribution (Fig. 4.5), have better performance

compared to the left-skew and “Base IoU=0.5” cases. Moreover, while OHPM does

not improve the performance of left-skew and “Base IoU=0.5” cases, it is crucial

for the right-skew and uniform distributions (Table 4.1). Therefore, similar to prime

sampling [33], we show that examples with higher IoUs are crucial during training,

however, we also show that these examples should be supported by hard examples.

4.5.4 Relative Spatial Imbalance

We now analyse the relative spatial distribution of the RPN RoIs and how they fit

within the theoretical IoU boundaries in Fig. 4.6. To be able to make such an analy-

sis, we selected a reference box with [x1, y1, x2, y2] = [0.3, 0.3, 0.6, 0.6]. At the final

epoch of the RPN training, we track positive RPN RoIs with associated ground truths.

As discussed in Section 4.3.1, we scaled and shifted the ground truths to the refer-

ence box and applied the same transformations to their associated positive RPN RoIs.

Among the positive RPN RoIs, top-left (TL) points of the 2, 500 RoIs are plotted with

green dots in Fig. 4.6. Then, using findTLFeasibleSpace() function in Algorithm 1,

we plot the theoretical limits for the top left points for RoIs with IoUs larger than 0.5,

0.6, 0.7, 0.8 and 0.9.Especially the last two observations may be critical for an object
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Figure 4.6: Relative spatial distribution of 2, 500 RPN RoIs TL points and max. IoU

limits from IoU = 0.9 to 0.5 (in-out direction)

detector since they may result in a positive bias towards specific RoIs and may make

the generalization difficult over the entire spatial space. However, the effects of all

these observations require experimental or theoretical validation that is not provided

in this paper.

Fig. 4.6 leads to several key findings: (1) As expected, as the IoU decreases, the

boundaries occupy a larger space around the TL point of the reference box. Hence,

the sample space for 0.9 is very small, which makes it more difficult to have distinct

RoIs with IoU > 0.9. (2) We observe that no TL point is outside of the 0.5 boundary,

which is a sanity check for the boundaries since a RoI is labeled as positive if it has at

least 0.5 IoU with a ground truth. (3) The TL points of the RPN RoIs are accumulated

around the TL point of the reference box and they are not uniformly distributed within

the 0.5 boundary. (4) The TL points of the RPN RoIs tend to be inside the reference

box more than to be outside. Specifically, RPN RoIs between x > 0.3, y > 0.3 and

x < 0.3, y < 0.3 are 28.2% and 21.0% of the all, respectively.

4.6 Practical Improvements

In this section, we propose OFB sampling and show the effect of employing pRoI

generator for training the second-stage of Faster R-CNN.
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Table 4.2: Average performance of 3 runs for Faster R-CNN with our OFB sampling

on Pascal VOC. Lower is better for oLRP and its components, whereas higher is

better for AP.

Sampling Method oLRP ↓ oLRPLoc ↓ oLRPFP ↓ oLRPFN ↓ AP50 ↑

Random 59.4 18.7 16.2 27.7 78.0

OFB 58.9 18.7 15.6 27.2 78.5

Table 4.3: Comparison of different sampling mechanisms on COCO using Faster R-

CNN. Lower is better for oLRP and its components, whereas higher is better for AP.

APC stands for COCO-style AP. R and H denote random and hard sampling respec-

tively, and OFB is our sampling method for positive RoIs. The first block compares

among different positive sampling schemes combined with random sampling, while

the second block compares their combinations with hard example mining.

Sampling Method

Positive Negative oLRP ↓ APC ↑ AP50 ↑

R R 72.4 34.1 55.2

H R 75.3 31.0 51.7

OFB R 72.1 34.7 55.8

R H 71.9 35.3 54.6

H H 74.6 31.1 50.0

OFB H 70.9 35.6 55.3

4.6.1 Online Foreground Balanced Sampling

In the conventional training, the set of positive RoIs are limited and they are not

generated as in pRoI generator. Motivated from the analysis using pRoI generator

on the effect of foreground-foreground class imbalance (Section 4.5), we propose an

online sampling method to be used in the conventional training pipeline. Denoting

the total number of classes in a batch by C and the number of positive RoIs for class

c by kc, each RoI is assigned a probability 1/(Ckc) and the subset of RoIs to train

Faster R-CNN is sampled from this multinomial distribution. We call this sampling
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scheme as Online Foreground Balanced (OFB) Sampling.

In order to see the effect, we train Faster R-CNN with and without OFB sampling

and present results in Tables 4.2 and 4.3. For the Pascal VOC [48], we observe 0.5%

improvement in AP50 and oLRP, with better performance in precision and recall

components of oLRP and no impact on the regression branch. In our experiments

with COCO (Table 4.3), we compared our results with hard example mining [24, 27].

Similar to the findings of Cao et al. [33] and our analysis in Section 4.5, while hard

positive mining does not improve performance, our OFB sampling is beneficial for

foreground examples. Moreover, the table shows that OFB sampler can be combined

with sampling approaches for negative BBs. In any case, similar to our experiments

for Pascal VOC, the best performance gain is in AP50. This suggests that controlling

RoIs to balance foreground classes has also a role during training of the object detec-

tors and OFB, an efficient sampling algorithm, can be considered a basic solution for

the problem.

4.6.2 Generating More Samples in Higher IoUs

Our approach can be integrated into an object detector without any hindrance on

the gradient paths. In this section, we compare a detector trained with our pRoI

Generator with a detector trained with the conventional method (i.e. using RPN RoIs)

– Table 4.4. We use Uniform RoI source with foreground balance and OHPM since

it performed the best in Table 4.1. For IoU = Θ, we randomly sample negative

samples from the output of the RPN in the range [0.1,Θ] and the positive samples are

provided by the pRoI generator also using OHPM. To apply OHPM, we first generate

RoINum boxes, then select fg many from them. In IoUs 0.6 − 0.8, for which

fewer RoIs are possible than 0.5, we initially train the models for 1 epoch by setting

fg = 32 and bg = 96 and track “Mean RoI #” to see an upper bound for the models

to generate RoIs and prevent class imbalance modelwise. In this run, Mean RoI

# for IoUs 0.6, 0.7, 0.8 are 17.26, 7.60, 1.72 for RPN and 20.0, 11.41, 4.67 for pRoI-

Uniform respectively. Then using IoU = 0.5 as an example, we multiply the resulting

“Mean RoI #” by 1.5 and set fg approximately to it with bg = 3 × fg as in the

conventional training. This approach makes training more stable and fair especially
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Table 4.5: Effect of RoINum on PASCAL VOC. Speeds are reported on a single

Geforce GTX 1080 Ti.

RoI Source RoINum oLRP ↓ AP50 ↑ Train Speed ↓ Mean RoI # ↑

pRoI-Uniform 32 60.3 77.5 0.41s 14.81

pRoI-Uniform 64 59.7 77.6 0.58s 21.32

pRoI-Uniform 128 59.9 77.8 0.97s 25.49

for the RPN (Table 4.4) by balancing foreground and background consistently.

Looking at Table 4.4 and comparing the methods in the IoUs that they are trained for,

we observe the following: (1) For IoU = 0.5, 0.6 and IoU = 0.7 we get comparable

results with the conventional training. (2) For IoU = 0.8, where RPN is not able to

generate sufficient samples, the performance increases significantly in terms of both

metrics since, at each iteration, generated positive boxes are provided consistently to

the second stage. (3) Overall, the mean RoI # is approximately four times higher at

IoU = 0.8; and, AP80 and oLRP improve by 10.9% and 4.8% respectively. A similar

trend is also achieved for IoU = 0.9.

In short, these results demonstrate that it is possible to train an object detector using

BB generator with comparable results for lower IoUs and significantly better perfor-

mance for higher IoUs. On par performance for low IoUs can be owing to the fact

that there are sufficient amount of samples for these cases to see any imbalance effect.

Effect of RoINum: Apart from the input parameters to determine the nature of the

RoI source, RoINum is the only new hyperparameter in Algorithm 2. In Table 4.5,

we observe that training improves (AP50 increases) when RoINum is increased be-

cause we have more positive samples at each iteration. However, more samples mean

slower (yet still acceptable) training speed compared to conventional training having

0.23s training speed.

Preliminary Results on COCO: In order to back up our claims, we also conducted

an experiment on COCO dataset using IoU = 0.8 with Faster R-CNN. Compared

to the baseline achieving oLRP = 95.1 and AP80 = 13.2, using pRoI generator the

model has oLRP = 93.7 and AP80 = 15.3. These results suggest that our model is
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able to generate more diverse examples than the baseline in larger IoUs.

4.7 Conclusion

In this paper, we proposed a BB generator and a positive RoI generator. We showed

that generated RoIs can be used both as an analysis tool (owing to its controllable

nature) and a training method for the two-stage object detectors.

We showed that there is a bias in the RPN RoIs’ IoU and spatial distribution with

respect to the IoU boundaries that are physically possible and analysed the IoU dis-

tributions of RPN and other RoI sources.

Using our BB generator, we developed a pRoI generator that can generate RoIs over-

lapping with a GT box with a desired IoU or relative spatial distribution. Then, we

trained Faster R-CNN’s second-stage with the RoIs generated according to different

distributions. We showed that, by producing more samples than RPN, we can achieve

better or comparable performance to Faster R-CNN. Moreover, our results reconcili-

ated two conflicting recent studies [27, 33] that both high-IoU and hard RoIs can have

positive effect on the training if the IoU distribution is appropriate.

Our ideas can be used for analyzing the anchors of a one-stage detector (as well as

those of a two-stage detector) in order to design a better anchor set. Furthermore,

other applications, e.g. tracking, that require spatially distributed BBs with certain

properties can also exploit our approach.

109



110



CHAPTER 5

LOCALISATION RECALL PRECISION (LRP) ERROR FOR EVALUATING

VISUAL DETECTION TASKS

This chapter presents our novel performance metric, Localisation-Recall-Performance

(LRP) Error, for evaluating visual detection tasks based on our works,

• Kemal Oksuz, Baris Can Cam, Emre Akbas* and Sinan Kalkan∗, “Localization

Recall Precision (LRP): A New Performance Metric for Object Detection”, Eu-

ropean Conference on Computer Vision (ECCV), 2018.

• Kemal Oksuz, Baris Can Cam, Sinan Kalkan∗ and Emre Akbas∗, “One Metric

to Measure them All: Localisation Recall Precision (LRP) for Evaluating Vi-

sual Detection Tasks”, under review at IEEE Transactions on Pattern Analysis

and Machine Intelligence (TPAMI).

Here, we mainly exploit the text from our preprint (i.e. submission to TPAMI) [147]

as the recent and extended version of our conference paper on LRP Error [107] by

making minor changes mainly to ensure the notation to be consistent throughout the

thesis.

5.1 Introduction

Many vision applications require identifying objects and object-related information

from images. Such identification can be performed at different levels of detail, which

are addressed by different detection tasks such as “object detection” for identifying
∗ Equal contribution for senior authorship.
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labels of objects and boxes bounding them, “keypoint detection” for finding keypoints

on objects, “instance segmentation” for identifying the classes of objects and localis-

ing them with masks, and “panoptic segmentation” for classifying both background

classes and objects by providing detection ids and labels of pixels in an image. Ac-

curately evaluating performances of these methods is crucial for developing better

solutions.

Today “average precision” (AP), the area under the Precision-Recall (PR) curve, is

the de facto standard for evaluating performance on many visual detection tasks and

competitions [13, 48, 49, 98, 99, 148, 45]. AP not only enjoys vast acceptance but

also appears to be unchallenged. There has been only a few attempts on developing

an alternative to AP [107, 149, 150]. Despite its popularity, AP has many limitations

as we discuss below.

5.1.1 Important features for a performance measure

To facilitate our analysis of AP and other performance measures, we define three

important features:

Completeness. Arguably, three most important performance aspects that an evalua-

tion measure should take into account in a visual detection task are false positive (FP)

rate, false negative (FN) rate and localisation error. We call a performance measure

“complete” if it precisely takes into account all three quantities.

Interpretability. Interpretability of a performance measure is related to its ability

to provide insights on the strengths and weaknesses of the detector being evaluated.

To provide such insight, the evaluation measure should ideally comprise interpretable

components.

Practicality. Any issue that arises during practical use of a performance measure

diminishes its practicality. This could be, for example, any discrepancy between the

well-defined theoretical description of the evaluation measure and its actual applica-

tion in practice, or any shortcoming that limits the applicability of the measure to

certain scenarios.
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5.1.2 Limitations of AP

Completeness. Localisation quality is only loosely taken into account in AP. De-

tections that meet a certain localisation criterion (e.g., intersection over union (IoU)

over 0.50 in object detection) are treated equally regardless of their actual localisation

quality. Further increase in localisation quality, for example, increasing the IoU of a

true positive (TP) detection, does not change AP (Fig. 5.1).

Interpretability. The AP score itself does not provide any insight in terms of the

important performance aspects, namely, FP rate, FN rate and localisation error. One

needs to inspect the PR curve and make additional measurements (e.g. average-recall

(AR) or some kind of localisation quality) in order to comment on the weaknesses or

strengths of a detector in terms of these aspects. Therefore, being an approximation

of the area under the PR curve, AP may fail to distinguish between the underlying

issues of different detectors, as illustrated in Fig. 5.1.

Practicality. We identify three major issues related to the practical use of AP:

(i) Using AP to evaluate hard-prediction tasks, i.e. tasks that involve outputs without

confidence scores, such as panoptic segmentation [150], is problematic because hard

predictions yield only a single point on the PR curve. Assumptions are needed to

compute the area under the PR curve consisting of just one point.

(ii) AP cannot be used for model selection. For example, when a detector is to be

deployed for a certain problem, an optimal detection threshold is needed. AP does

not offer any help in finding such optimal thresholds.

(iii) Lastly, one needs to interpolate the PR curve before computing AP, which, as we

will show, is a problem with classes with few examples.

We provide a detailed discussion on each limitation in Section 5.3 and provide an

empirical analysis in Section 5.7.2.
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5.1.3 Motivation for our Localisation Recall Precision (LRP) Error

LRP Error is a novel performance metric for visual detection tasks. We proposed LRP

Error in our first work [107] for the object detection task, and then extended it for all

visual detection task [147], where we showed that it alleviates all the aforementioned

limitations of AP (Section 5.1.2): (i) LRP Error precisely combines the important

performance aspects, therefore it is complete (compare AP and LRP in Fig. 5.1 - see

Section 5.1.1 for completeness). (ii) LRP Error is easily interpretable by definition,

and through its components, it provides insights regarding each performance aspect

(compare AP and LRP in Fig. 5.1). (iii) Regarding the practicality issues of AP; with

the Optimal LRP (oLRP) extension, LRP Error can evaluate both soft predictions (i.e.

outputs with class labels and confidence scores, such as in object detection) and hard

predictions (i.e. outputs with class labels only, such as in panoptic segmentation),

can provide a class-specific optimal threshold and does not employ any interpolation

for its computation. In addition, LRP is a metric, for which, however, we do not

demonstrate any theoretical or practical benefits.

5.1.4 Other alternatives to AP

While AP is still de facto performance measure for many visual detection tasks, re-

cently proposed visual detection tasks have preferred not employing AP, but instead

introduced novel performance measures:

Panoptic Quality (PQ): Panoptic segmentation task [150] requires the background

classes to be labeled and localised by masks in addition to the objects. Since this task

is a combination of the instance segmentation and semantic segmentation tasks, AP

can be used to evaluate performance. However, arguing the inconsistency between

machines and humans in terms of perceiving the objects due to the confidence scores

in the outputs, Kirillov et al. [150] preferred to discard these scores for evaluation.

Considering the limitations of AP to evaluate hard predictions (Section 5.1.2), PQ

was proposed as a new performance measure to evaluate the results of the panoptic

segmentation task. Similar to LRP Error [107], PQ combines all important perfor-

mance aspects of visual detection, however, its extension to other visual detection
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tasks has not been explored. We provide a detailed analysis on PQ in Section 5.4 and

discuss empirical results in Section 5.7.3. Note that PQ was proposed later than LRP.

Probability-based Detection Quality (PDQ): Unlike conventional object detection,

probabilistic object detection (POD) [149] takes into account the spatial and semantic

uncertainties of the objects, and accordingly for each detection, requires (i) a proba-

bility distribution over the class labels (i.e. instead of a single confidence score as in

soft predictions) and (ii) a probabilistic bounding box represented by Gaussian dis-

tributions. Similar to Kirillov et al. [150], Hall et al. [149] also did not prefer an

AP-based performance measure for POD, instead proposed a new performance mea-

sure called PDQ to evaluate probabilistic outputs. In this chapter, we limit our scope

to deterministic approaches to visual detection tasks. Therefore, we do not delve into

a detailed discussion on PDQ as we do for AP and PQ; instead, we provide a guid-

ance on how LRP Error can be extended for different visual detection tasks in Section

5.5.4.

5.1.5 Contributions of the Chapter

Our contributions are as follows:

1. We thoroughly analyse Average Precision and Panoptic Quality.

2. We present LRP Error and describe its use for all visual detection tasks. LRP

Error can evaluate all visual detection tasks in both output types (i.e. hard and

soft predictions) by alleviating the drawbacks of AP and PQ. In particular, we

empirically present the usage of LRP on four important visual detection tasks,

namely, object detection, keypoint detection, instance segmentation, panoptic

segmentation, and discuss its potential extensions to other tasks.

3. While LRP Error can directly be used for hard predictions, to evaluate soft

predictions we propose Optimal LRP (oLRP) error as the minimum achievable

LRP Error over the confidence scores.

4. We show that LRP Error is an upper bound for the error versions of precision,

recall and PQ (Section 5.6). Therefore, minimizing LRP is guaranteed to mini-
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mize the other measures.

5. We show that the performances of visual object detectors are sensitive to thresh-

olding, and based on oLRP, we propose “LRP-Optimal Threshold” to reduce

the number of detections in an optimal manner.

To demonstrate that LRP provides more insight than AP and PQ, we compare LRP

with its counterparts on 35 state-of-the-art visual detectors. Using these detectors,

we provide examples, observations and various analysis with LRP and oLRP at the

detector- and class-level to present its evaluation capabilities. Our experiments also

show that (i) LRP can unify the evaluation of all visual detection tasks in any desired

output type (i.e. soft predictions or hard predictions), (ii) object detectors need to be

thresholded in a class-specific manner, (iii) LRP-Optimal threshold is able to thresh-

old object detectors a class-specific manner by considering all performance aspects,

and (iv) the additional overhead of LRP computation to the COCO toolkit is negligi-

ble: It takes an additional 0.2 milliseconds per image on average (on COCO 2017 val)

to output LRP, its components and LRP-Optimal thresholds on an eight-core standard

CPU.

5.1.6 Outline of the Chapter

The chapter is organized as follows. Section 5.2 presents the related work. Sections

5.3 and 5.4 present a thorough analysis of Average Precision and Panoptic Quality

respectively. Section 5.5 defines the LRP Error, oLRP Error and potential extensions

of LRP. Section 5.6 compares LRP Error with AP and PQ. Section 5.7 presents several

experiments to quantitatively analyse LRP. Finally, Section 5.8 concludes the chapter.

5.2 Related Work

Evaluation in visual detection tasks. As discussed in Section 5.1, except for the

panoptic segmentation task which uses PQ [150], the performances of visual object

detection methods are conventionally evaluated using AP. Sections 5.3 and 5.4 discuss

and present an analysis of these performance measures.
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Another measure, PDQ [149] has recently been proposed for evaluating the proba-

bilistic object detection task, where the label of a detection is represented by a discrete

probability distribution over classes and the bounding boxes are encoded by Gaussian

distributions. To compute PDQ, first, pairwise PDQ (pPDQ) score is computed over

all detection-ground truth pairs and the optimal matchings are identified following

the Hungarian Algorithm [151]. Then, determining TPs, FPs and FNs, and using

the pPDQs of optimal matchings, PDQ score of a detection set can be computed by

normalizing the sum of these pPDQs by the total number of TPs, FPs and FNs. To

evaluate each pair, pPDQ combines localisation and classification performances by

its spatial quality and label quality components. The spatial quality evaluates a pair

in a pixel-based manner (i.e. not box-based) by exploiting the segmentation mask of

the ground truth. And, the label quality of a pair is the probability of the ground truth

label in the label distribution of the detection. Therefore, computing PDQ requires

(i) segmentation masks which are normally not provided for the conventional object

detection task, and (ii) the outputs to be in the described probabilistic form. In this

chapter, we demonstrate that LRP can be used for all common visual detection tasks

having the conventional deterministic representation, and provide a guideline on how

it can be employed by other tasks.

Analysis tools for visual detection tasks. Over the years, diagnostic tools have

been proposed for providing detailed insights on the performances of detectors. For

example, Hoiem et al. [152] selected the top-k FPs based on confidence scores and

analysed them in terms of common error types (i.e. localisation error, confusion

with similar objects, confusion with other objects and confusion with background).

However, the tool of Hoiem et al. [152] requires additional analysis for FNs. Another

toolkit, the COCO toolkit [13], is based on this analysis tool, but instead plots the

considered error types on PR curves progressively to present how much AP difference

is accounted by each error type. Recently, Bolya et al. [153] showed that the COCO

toolkit can yield inconsistent outputs when the order of progressive contribution of the

error types to the AP is interchanged. Moreover, this analysis by the COCO toolkit

yields superimposed numerous PR curves which are time-consuming to examine and

hard to digest. Based on these observations, Bolya et al. [153] proposed TIDE, a

toolkit addressing the limitations of the previous analysis tools. TIDE introduces six
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different error types, each of which is summarized by a single score in the analysis

result. Although such tools are useful for providing detailed insights on the types of

errors detectors are making, they are not performance measures, and as a result they

do not yield a single performance value as the detection performance.

Point multi-target tracking performance metrics. The evaluation of the detection

tasks is very similar to that of multi-target tracking in that there are multiple instances

of objects/targets to detect, and the localisation, FP and FN errors are common criteria

for success. Currently, component-based performance metrics are the accepted way

of evaluating point multi-target tracking methods. One of the first metric to combine

the localisation and cardinality (including both FP and FN) errors is the Optimal

Subpattern Assignment (OSPA) [154]. Among the successors of OSPA, our LRP

[107] was inspired by the Deficiency Aware Subpattern Assignment metric [155],

which combines the three important performance aspects.

Summary. We observe that, with similar error definitions, point multi-target tracking

literature utilizes component-based performance metrics commonly, which has not

been explored thoroughly in the visual detection literature. While a recent attempt,

panoptic quality, is an example of that kind, it is limited to panoptic segmentation

(Section 5.4). The analysis tools also aim to provide insights on the detector, however,

a single performance value for the detection performance is not provided by these

methods. In this chapter, we propose a single metric that ensures important features

(i.e. completeness, interpretability and practicality) while evaluating the performance

of methods for visual detection tasks. We also show that our metric, considering all

performance aspects, is able to pinpoint a class-wise optimal threshold for the visual

detectors, from which several applications can benefit in practice.

5.3 Average Precision

This section provides a definition of AP and its detailed analysis.
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5.3.1 Definition of AP

Computing AP for a class involves a set of detection results with confidence scores

and a set of ground-truth items (e.g. bounding boxes in the case of object detection).

First, detections are matched to ground-truth items (GT) based on a predefined spatial

overlap criterion such as IoU1 being larger than τ = 0.50. Each GT can only match

one detection and if there are multiple detections that satisfy the overlap criterion, the

one with the highest confidence score is matched. A detection that is matched to a

GT is counted as a TP. Unmatched detections are FPs and unmatched GTs are FNs.

Given a specific confidence threshold s, detections with a lower confidence score than

s are discarded, and TP, FP, FN values are calculated with the remaining detections

as described. By systematically changing s, we obtain a precision-recall (PR) curve.

This process usually results in a non-monotonic curve, that is, the precision may go

up and down as recall is increased. Conventionally [13, 14, 48, 100, 45], in order to

decrease these wiggles, the PR curve is interpolated as follows: denoting the precision

at a recall ri before and after interpolation by p(ri) and p̂(ri) respectively, p̂(ri) =

max
rj>ri

p(rj) [48]. Then, AP (for a class) is the area under this interpolated curve, or an

approximation of this area by averaging it over evenly-spaced recall values [48, 13].

The detector’s performance over all classes is obtained simply by averaging over

AP values per class. In order to include the localisation quality, which is somewhat

ignored by AP, the COCO-style AP, denoted by APC, computes 10 APτ where the TP

validation threshold, τ , is increased between 0.50 and 0.95 with a step size of 0.05,

and these 10 APτ values are averaged. From the definition of AP, it follows that it is

a ranking-based performance measure, and favors methods that have high precision

over the entire recall domain.

5.3.2 An Analysis of AP

In the following, we provide an analysis of AP by discussing its limitations introduced

in Section 5.1.2 in detail:

Completeness. AP does not explicitly evaluate localisation performance (Fig. 5.1)
1 Note that while for the object detection task IoU is computed between bounding boxes, it is computed

between the masks for segmentation tasks.
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and therefore, violates completeness. To circumvent this issue, researchers typically

use the following methods, neither of which ensures completeness:

• Quantitatively using COCO-style AP (APC) or APτ with large τ : AP variants

do not include the precise localisation quality of a detection except for thresh-

olding, hence the contribution of the localisation performance to these AP vari-

ants is always loose. Owing to this loose contribution, the localisation quality

can not been quantified by AP. As a result, the methods specifically proposed to

improve the localisation quality [20, 156, 90, 93, 157] have been struggling to

present their contributions quantitatively. While some of them [20, 93] present

only APC, AP75 and AP50, a subset of these methods [156, 36, 90, 157] addi-

tionally resort to APs with larger τ values such as AP80 or AP90. In any case,

it is not clear or consistent to interpret any AP variant in terms of localisation.

• Presenting qualitative examples [37, 19, 23, 24, 158, 159]: In this case, note

that it is very likely for the selected examples to be very limited and biased.

We empirically analyse this limitation in Section 5.7.2.1.

Interpretability. The resulting AP value does not provide any insight on the strengths

or weaknesses of the detector. As illustrated in Fig. 5.1, different detectors may yield

different PR curves, highlighting different types of performance issues. However, be-

ing an approximation of the area under the PR curve, AP fails to distinguish between

the underlying issues of different detectors. This is mainly because both precision

and recall performances of a detector are vaguely combined into a single performance

value as an AP value. Besides, interpreting the COCO-style AP, APC, is more diffi-

cult since the localisation quality is also integrated in an indirect and loose manner,

resulting in an ambiguous contribution of important performance aspects, where it is

not clear how much each aspect affects the resulting single performance value. Sim-

ilar to our previous work [107], Bolya et al. [153] also criticized AP since it does

not isolate error types. To alleviate this, the COCO toolkit [13] can output PR curves

with an error analysis, which requires manual inspection of several superimposed PR

curves in order to understand the strengths and weaknesses. This is, however, time-

consuming and impractical with large number of classes such as the LVIS dataset [45]

with around 1000 classes (also see the discussion on analysis tools in Section 5.2).
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We empirically analyse this limitation in Section 5.7.2.2.

Practicality. One can also face some practical challenges while employing AP for

some use-cases:

• Evaluation of hard predictions with AP, though possible, is problematic. Note

that a hard prediction (i.e. an output without confidence score) corresponds

to a single point on the PR space, hence determines a step PR curve resulting

in AP = Precision × Recall. However, AP intends to prioritize and rank the

detections with respect to their confidence scores, which are not included in

hard predictions. As a result, in a recent study, Kirillov et al. [150] proposed a

new performance measure called Panoptic Quality for the panoptic segmenta-

tion task (e.g. instead of using Precision × Recall as AP), which can evaluate

hard predictions. Therefore, the usage of AP on hard predictions does not fit

into its ranking-based definition.

• AP does not offer an optimal threshold for a detector. Being defined as the area

under the PR curve, any thresholding on detections decreases this area. Hence,

performance with respect to AP increases, when the confidence score threshold

approaches to 0 (i.e. the case of “no-thresholding”). As a result, it is not clear

how the large number of object hypotheses can be reduced properly with AP

when a visual detector is to be deployed in a practical application.

• Using AP for classes with few examples is problematic owing to the interpo-

lation of the PR curve (Section 5.3.1 for how PR curve is interpolated in AP

computation). Having few examples causes the recall axis to have a sparse set

of values, and in this case interpolating the line segments spanning larger recall

intervals will change the AUC more, which can especially have an effect for

long-tail visual detection challenges such as LVIS [45] with a median of only 9

instances per class in the validation set.

We empirically analyse these limitations in Section 5.7.2.3.
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5.4 Panoptic Quality

Following a similar methodology with how we analysed AP, this section provides an

analysis for PQ.

5.4.1 Definition of PQ

The PQ measure is proposed to evaluate the performance of panoptic segmentation

methods [150]. Given hard predictions (i.e. outputs without confidence scores), first,

the detections are labelled as TP, FP and FN using an IoU-based criterion, and then

the numbers of TPs (NTP), FPs (NFP), FNs (NFN) and the localisation quality of TP

detection masks in terms of IoU (i.e. IoU(gi, dgi) is the IoU between the mask of the

ground truth gi and the mask of the associated detection, dgi , with gi) are computed.

Based on these quantities, PQ between a ground truth set G and a detection set D is

defined as:

PQ(G,D) =
1

NTP + 1
2
NFP + 1

2
NFN

(
NTP∑
i=1

IoU(gi, dgi)

)
. (5.1)

PQ is a “higher is better” measure with a range between 0 and 1, and includes the

localisation quality of TPs, the number of FPs and the number of FNs. To provide

more insight on the segmentation performance, PQ is split into two components: (i)

Segmentation Quality (SQ), defined as the average IoU of the TPs, is a measure of

the localisation performance; (ii) Recognition Quality (RQ) is a measure of classifi-

cation performance defined as the F-measure. Using SQ and RQ, PQ can equally be

expressed as: PQ(G,D) = SQ(G,D)RQ(G,D).

5.4.2 An Analysis of PQ

In the following, we analyse PQ in terms of the same criteria that we used for AP:

Completeness. In contrast to AP, PQ precisely takes into account all performance

aspects (i.e. FP rate, FN rate and localisation error - see “completeness” in Section

5.1.1) that are critical for visual detectors.
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Table 5.1: A comparison of LRP and PQ for the detectors (i.e. Detector 1 and Detec-

tor 2) in scenarios (a) and (b) in Fig. 5.1 (Since PQ and LRP do not need confidence

scores, scores are simply ignored for computing PQ and LRP in these scenarios.) PQ

cannot identify the difference between these two scenarios, and yields exactly the

same results for both of its components (i.e. SQ and RQ). With a component for each

performance aspect, LRP can discriminate between these results using FP and FN

components. While for PQ and components higher is better; for LRP, lower is better.

Every slice, IoUM improves by 0.1

IoUM < 0.5

IoUM = 0.5

IoUM > 0.5

(a) (b) (c)

Scenario PQ SQ RQ

(a) 0.67 ≈ 1 0.67

(b) 0.67 ≈ 1 0.67

Scenario LRP Loc FP FN

(a) 0.50 ≈ 0 0.50 0.00

(b) 0.50 ≈ 0 0.00 0.50

(a) (b)

Interpretability. Another advantage of PQ compared to AP is that PQ is relatively

more interpretable than AP owing to its SQ and RQ components. On the other hand,

while Kirillov et al. [150] proposed using these components (i.e. SQ and RQ) to

provide insight on the detection performance, RQ, the F-measure, is limited in terms

of discriminating recall and precision performances (Table 5.1(a)). This is because

each performance aspect does not have a separate component in PQ (i.e. the error

types are not isolated [153]), but instead, both precision error and recall errors are

combined into a single component, RQ. Therefore, overall, PQ is superior than AP

in terms of interpretability, but having a component for each performance aspect is

better to provide more useful insights.

Practicality. Here we discuss the following issues, which mostly arise since PQ is

designed only for panoptic segmentation, and omit a discussion on its generalizability

over all detection tasks:

• Kirillov et al. [150] did not discuss how PQ can evaluate and threshold soft

predictions (i.e. the outputs with confidence scores). Kirillov et al. preferred

hard predictions for panoptic segmentation to eliminate the inconsistency be-

tween machines and humans in terms of perceiving the objects. Accordingly,

proposed for being limited to panoptic segmentation, PQ is designed to eval-

uate hard predictions, and its possible extensions on soft predictions (and also
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Every slice, IoU improves by 0.10

IoU < 0.50

IoU = 0.50

IoU > 0.50

(a) (b) (c)

Scenario PQ SQ RQ

(a) 0.67 ≈ 1 0.67

(b) 0.67 ≈ 1 0.67

Scenario LRP Loc FP FN

(a) 0.50 ≈ 0 0.50 0.00

(b) 0.50 ≈ 0 0.00 0.50

(a) (b)

Figure 5.2: An illustration that shows how a transition from a FP to TP is handled dif-

ferently by PQ and LRP. (a) An example image from COCO [13]. (b) Segmentation

masks for the ground truth with different IoU. The ground truth is split into 10 ap-

proximately equal slices. Orange line is the threshold where the detection is still a FP,

hence a single pixel added makes the detection a TP. (c) How PQ and LRP changes for

different IoU. While LRP is zeroth-order continuous, PQ is a discontinuous function

and allows large jumps.

other visual detection tasks) are not discussed and analysed by its authors.

• PQ overpromotes classification performance compared to localisation perfor-

mance inconsistently. We observe the following for PQ: (i) Fig. 5.2 illustrates

how small shifts, induced by a TP, can cause large changes in PQ. Due to this

promotion of a TP via a jump in the performance value, the effect of the locali-

sation quality is decreased since the localisation quality can contribute between

PQ ∈ [0.50, 1.00] (Fig. 5.2), (ii) While one can prefer classification error to

have a larger effect on the overall performance, the formulation of PQ is incon-

sistent in terms of how localisation and classification performances are com-

bined. In order to provide a comparative analysis with our performance metric,

we discuss this inconsistency in Section 5.6. (iii) This inconsistent combina-

tion also makes PQ violate the triangle inequality property of metricity (see

Appendix C for a proof).

5.5 Localisation-Recall-Precision (LRP) Error

In this section, we describe and analyse the LRP Error in Sections 5.5.1 and 5.5.2 re-

spectively. Then, we present Optimal LRP (oLRP) as the extension of LRP for eval-
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uating and thresholding soft-prediction-based visual object detectors (Section 5.5.3).

We also discuss and present a guideline for other potential extensions of LRP Error

(Section 5.5.4).

5.5.1 LRP: The Performance Metric

Definition: LRP is an error metric that considers both localisation and classification.

To compute LRP(G,D) given a set of detections (D - each di ∈ D is a tuple of

class-label and location information), and a set of ground truth items (G), first, the

detections are assigned to ground truth items based on the matching criterion (e.g.

IoU) defined for the corresponding visual detection task. Once the assignments are

made, the following values are computed: (i) NTP, the number of true positives; (ii)

NFP, the number of false positives; (iii) NFN, the number of false negatives and (iv)

the localisation qualities of TP detections, i.e. lq(gi, dgi) for all dgi where dgi is a TP

matching with ground truth gi. Using these quantities, the LRP error is defined as:

LRP(G,D) :=
1

Z

(
NTP∑
i=1

1− lq(gi, dgi)

1− τ
+ NFP + NFN

)
, (5.2)

where Z = NTP +NFP +NFN is the normalisation constant and τ is the TP validation

threshold (τ = 0.50 unless otherwise stated). Eq. 5.2 can be interpreted as the

“average matching error”, where the term in parentheses is the “total matching error”,

and Z represents the “maximum possible value of the total matching error”. A TP

contributes to the total matching error by its localisation error normalized by 1 − τ
to ensure that the value is in interval [0,1] and LRP is a zeroth-order continuous

function(Fig. 5.2(c)). And, each FP or FN contributes to the total matching error by

1. Finally, normalisation by Z ensures LRP(G,D) ∈ [0, 1]. We prove that LRP is a

metric if 1− lq(xi, yxi) is a metric (Appendix D).

Components: In order to provide additional information on the characteristics of the

detector, we show that LRP can be equivalently defined in a weighted form as:

LRP(G,D) :=
1

Z
(wLocLRPLoc(G,D) + wFPLRPFP(G,D)

+wFNLRPFN(G,D)) , (5.3)

with the weights wLoc = NTP

1−τ , wFP = |D|, and wFN = |G| intuitively controlling
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the contributions of the terms as the upper bound of the contribution of a component

(or performance aspect) to the “total matching error”. These weights ensure that each

component corresponding to a performance aspect (Section 5.1.1) is easy to interpret,

intuitively balances the components to yield Eq. 5.2 and prevents the total error from

being undefined whenever the denominator of a single component is 0. The first

component, LRPLoc, represents the localisation error of TPs as follows:

LRPLoc(G,D) :=
1

NTP

NTP∑
i=1

(1− lq(gi, dgi)). (5.4)

The second component, LRPFP, in Eq. 5.3 measures the FP rate:

LRPFP(G,D) := 1− Precision = 1− NTP

|D|
=

NFP

|D|
, (5.5)

and the FN rate is measured by LRPFN:

LRPFN(G,D) := 1− Recall = 1− NTP

|G|
=

NFN

|G|
. (5.6)

When necessary, the individual importance of localisation, FP, FN errors can be

changed for different applications (Section 5.6 and Appendix E).

5.5.2 An Analysis of LRP

As we did for AP (Section 5.3.2) and PQ (Section 5.4.2), in the following we analyse

LRP in terms of important features for a performance measure.

Completeness: Both definitions of LRP Error above (which are equivalent to each

other) clearly take into account all performance aspects precisely, and ensure com-

pleteness (Section 5.1.1).

Interpretability: The ranges of total error and the components are [0, 1], and a lower

value implies better performance. LRP Error describes the “average matching error”

(see Definition), and each component summarizes the error for a single performance

aspect, thereby providing insights on the strengths and weaknesses of a detector.

Therefore, LRP Error ensures interpretability (Section 5.1.1). In the extreme cases;

LRP = 0 means that each ground truth item is detected with perfect localisation, and

if LRP = 1, then no detection matches any ground truth (i.e., |D| = NFP).
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Figure 5.3: A visual comparison of AP and LRP. (a) A PR curve. The cross marks

a hypothetical optimal-recall-precision point (oRP) (e.g. the point where F1-measure

is maximized). (b) A localisation, recall and precision curve, where “Mean lq” is the

average localisation quality of TPs. Unlike any performance measure obtained via a

PR curve (e.g. AP), LRP Error intuitively combines these performance aspects (Eq.

5.2), and instead of area under the curve, uses the minimum of LRP values, defined

as oLRP, as the performance metric. (c) An s-LRP curve to present the performance

distribution of a detector for a class over confidence scores. Its minimum is oLRP.

Practicality: Since Eq. 5.2 requires a thresholded detection set (i.e. does not require

confidence scores), LRP can directly be employed to evaluate hard predictions, and

can be computed exactly without requiring any interpolations or approximations. In

the next section, we discuss how LRP can be extended to evaluate soft predictions

using Optimal LRP (oLRP) and show that it can also be computed exactly. Also, in

order to prevent the over-represented classes in the dataset to dominate the perfor-

mance, similar to AP and PQ, LRP is computed class-wise and then these class-wise

LRP errors are averaged to assign the LRP Error of a detector. One practical issue

of LRP is that localisation and FP components are undefined when there is no detec-

tion, and the FN component is undefined when there is no ground truth. However,

even if some components (not all) are undefined, the LRP Error is still defined (Eq.

5.2). Namely, LRP is undefined only when the ground truth and detection sets are

both empty (i.e., NTP + NFP + NFN = 0), i.e., there is nothing to evaluate. When a

component is undefined, we ignore the value while averaging it over classes.
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5.5.3 Optimal LRP (oLRP): Evaluating and Thresholding Soft Predictions

Definition: Soft predictions (i.e. outputs with confidence scores) can be evaluated by,

first, filtering the detections from a confidence score threshold and then, calculating

LRP. We define Optimal LRP (oLRP) as the minimum achievable LRP error over the

detection thresholds or equivalently, the confidence scores2:

oLRP := min
s∈S

LRP(G,Ds), (5.7)

where Ds is the set of detections thresholded at confidence score s (i.e. those detec-

tions with larger confidence scores than s are kept, and others are discarded). Eq.

5.7 implies searching over a set of confidence scores, S, to find the best balance for

competing precision, recall and localisation errors.

Components: The components of LRP for oLRP are coined as localisation@oLRP

(oLRPLoc), FP@oLRP (oLRPFP), and FN@oLRP (oLRPFN). oLRPLoc describes

the average localisation error of TPs, and oLRPFP and oLRPFN together indicate the

point on the PR curve where optimal LRP is achieved. More specifically, one can

infer the shape of the PR curve using the (1 − oLRPFP, 1 − oLRPFN) pair defining

the optimal point on the PR curve.

Computation: Note that, theoretically, computing oLRP requires infinitely many

thresholding operations since S = [0, 1]. However, given that S is discretised by the

scores of the detections, in order to compute oLRP exactly, it is sufficient to threshold

the detection set only at the confidence scores of the detections. More formally, for

two successive detections di and dj (in terms of confidence scores) with confidence

scores si and sj where si > sj , LRP(G,Ds) = LRP(G,Dsj) if sj ≤ s < si. Then,

oLRP for a class can be computed exactly by minimizing the finite LRP values on

the detections, and one can average oLRP and its components over classes to obtain

the performance of the detector.

oLRP as a Thresholder: Conventionally, visual object detectors yield numerous de-

tections [18, 19, 160], most of which have smaller confidence scores. In order to

deploy an object detector for a certain problem, the detections with “smaller” confi-
2 Another way to evaluate soft predictions is the Average LRP (aLRP), the average of the LRP Errors over the

confidence scores. While in a recent study [156], we showed that aLRP can be used as a loss function, we discuss
in Appendix F why we preferred oLRP over aLRP as a performance measure.
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dence scores need to be discarded to provide a clear output from the visual detector

(i.e. model selection). While it is common to use a single class-independent thresh-

old for the detector (e.g., Association-LSTM [159] uses SSD [24] detections for all

classes with confidence score above 0.80), we show in Section 5.7.4 that (i) the perfor-

mances of the detectors are sensitive to thresholding, and (ii) the thresholding needs

to be handled in a class-specific manner. Note that balancing the competing perfor-

mance aspects in an optimal manner, oLRP satisfies these requirements. In particular,

we define the confidence score threshold corresponding to the oLRP Error as the

“LRP-Optimal Threshold” (s∗-see Fig. 5.3). Different from the common approach,

(i) s∗ is a class-specific optimal threshold, and (ii) s∗ considers all performance as-

pects of visual detection tasks (Fig. 5.3). See Appendices D and H for a further

discussion on thresholding object detectors.

5.5.4 Potential Extensions of LRP

This section discusses potential extensions of LRP Error in three levels:

Extension to Other Localisation Quality Functions: Any localisation function that

satisfies the following two constraints can be used within LRP: (i) lq(·, ·) should be

a higher-better function, and (ii) lq(·, ·) ∈ [0, 1]. In addition, choosing a lq(·, ·) such

that 1−lq(·, ·) is a metric, guarantees the metricity of LRP Error. In case constraint (ii)

is violated by a prospective lq(·, ·), then one can normalize the range of the function

(and also TP validation threshold, τ ) to satisfy this constraint. For example, as a

recently proposed IoU variant to measure the spatial similarity between two bounding

boxes, Generalized IoU (GIoU) [93] has a range of [−1, 1]. In this case, choosing

lq(·, ·) = GIoU(·, ·)/2 + 0.50 will allow the use of GIoU within LRP.

Extension to New Detection Tasks: While adopting for new detection tasks, one

should only consider the localisation quality function (see above). Following this,

LRP can easily be adapted to new or existing detection tasks such as 3D object detec-

tion and rotated object detection.

Extension to Other Fields: LRP can be extended for any problem with the following

two properties in terms of evaluation: (i) the similarity between a TP and its matched
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(a) LRP Error (b) PR Error (c) PQ Error (1-PQ)

Figure 5.4: How LRP Error, PR Error (i.e. 1-(Precision × Recall)) and PQ Error (i.e.

1-PQ) behave over different inputs. Mean lq is the average localisation qualities of

TPs. PR Error ignores localisation and PQ overpromotes classification compared to

localisation. The space is uniformly discretized and error combinations of up to 20

ground truths and 50 detections are depicted.

ground truth can be measured by using a similarity function (preferably a metric to

ensure the metricity of LRP), and (ii) at least one of the classification errors (i.e. FP

error or FN error) matters for performance. Then, to use LRP Error, it is sufficient to

ensure the similarity function satisfy the constraints for lq(·, ·) (see extension to other

localisation quality functions). If either FP or FN error is not included in the task,

then one can set the number of errors originating from the missing component (i.e.

NFP or NFN) to 0 and proceed with Eq. 5.2.

5.6 A Comparison of LRP with AP and PQ

To better understand the behaviours of the studied performance measures (AP, PQ

and LRP) and make comparisons, we plot them in the three dimensional space of

mean localisation quality, NTP and NFP + NFN (Fig. 5.4). To facilitate comparison,

we represent AP and PQ by their “error” versions, that is, for AP, we use “PR Error”

which is 1- Precision× Recall; and for PQ, we use “PQ Error” which is 1-PQ. Firstly,

note that, PR Error stays the same as you move parallel to the “Mean lq” axis as

expected (Fig. 5.4(b)). This is because PR Error, hence AP, uses the localisation

quality just to validate TPs, and it does not take into account the quality above the

TP-validation threshold. Secondly, PQ Error is lower than LRP Error at low “Mean
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(a) LRP vs Precision Error (b) LRP vs Recall Error (c) LRP vs PQ Error

Figure 5.5: The relation of LRP with (a) precision error (1-precision), (b) recall error

(1-recall) and (c) PQ error (1-PQ) using the examples from Fig. 5.4. LRP Error is

an upper bound for precision, recall and PQ errors. Since LRP includes recall (pre-

cision) and localisation in addition to precision (recall) error, the correlation between

precision (recall) error and LRP is not strong. On the other hand, with similar defini-

tions LRP and PQ evaluate similarly, but still their difference increases when Mean lq

decreases since PQ suppresses the effect of localisation by promoting classification

more.

lq”, e.g. 0.55 and 0.65, low NFP + NFN and large NTP (Fig. 5.4(a) and (c)). This

is due to the fact that PQ Error prefers to emphasize classification over localisation

(as discussed in Section 5.4). On the other hand, as hypothesized in Section 5.4,

the way how PQ overpromotes classification is inconsistent. To show this, we first

demonstrate that LRP and PQ Errors have quite similar definitions. PQ Error can be

written as (see Appendix G for the derivation):

1− PQ =
1

Ẑ

(
NTP∑
i=1

1− lq(gi, dgi)

1− 0.50
+ NFP + NFN

)
, (5.8)

where Ẑ = 2NTP + NFP + NFN. Note that setting τ = 0.50 and removing the coef-

ficient of NTP in Ẑ (in red) results in 1 − PQ = LRP (Eq. 5.2), which implies very

similar definitions for PQ and LRP Errors (and note that LRP was proposed before

PQ): Eq. 5.8 presents that (i) the “total matching error” of PQ and LRP Errors are

equal (Section 5.5.1 for total matching error), and (ii) PQ Error prefers doubling NTP

in the normalisation constant instead of normalizing the total matching error directly

by its maximum value (i.e. NTP + NFP + NFN) as done by LRP. Therefore, keeping

the total matching error the same, the normalisation constant of PQ Error grows in-
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consistently. In other words, the rates of the change of the total matching error and

its maximum possible value are different. As suggested in our previous work [107],

a consistent prioritization of a performance aspect can be achieved by including its

coefficient to both total matching error (i.e. nominator) and its maximum value (i.e.

denominator) as follows:

1

Z

(
NTP∑
i=1

αTP
1− lq(gi, dgi)

1− τ
+ αFPNFP + αFNNFN

)
(5.9)

where Z = αTPNTP + αFPNFP + αFNNFN. Following the interpretation of LRP

(Section 5.5.1), these coefficients imply duplicating each error source, hence the con-

sistency between the total matching error and its maximum value is preserved (see

Appendix E for more discussion).

In Fig. 5.5, we present the relationship of LRP with precision, recall and PQ Errors,

which show that LRP is an upper bound for all other error measures. As a result,

improving LRP can be considered a more challenging task than improving the other

two error measures.

The comparison of LRP with AP and PQ in terms of the important features (Section

5.1.1) of a performance measure for visual object detectors is summarized in Table

5.2. Please refer to Sections 5.3, 5.4 and 5.5 for further discussion.

5.7 Experimental Evaluation

In this section, we first present the usage and discriminative abilities of the LRP Error

on visual detection tasks in comparison to AP variants (Section 5.7.2) and PQ (Sec-

tion 5.7.3). Then, we show that the performances of object detectors are sensitive

to thresholding (Section 5.7.4) and provide a use-case of LRP-Optimal Thresholds

(Appendix H). Also we analyse the additional overhead of LRP computation and the

behaviour of LRP under different TP validation thresholds in Appendix H. We would

like to note that our main motivation is to present insights on LRP and represent its

evaluation capabilities rather than choosing which detection method is better.
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5.7.1 Evaluated Models, Datasets and Performance Measures

Evaluated Models: We use LRP to evaluate 35 state of the art (SOTA) methods

(i.e. 32 methods to evaluate soft predictions in Section 5.7.2 and 3 methods to eval-

uate hard predictions in Section 5.7.3) obtained from three widely-used repositories:

mmdetection [100], detectron [161] and detectron2 [14]3. We provide the correspond-

ing repository of each model in Table 5.3 to facilitate the usage and reproduction of

our results. We do not retrain the models but use the already trained instances pro-

vided in their repositories. We use R50, R101 and X101 as abbreviations for ResNet-

50, ResNet-101 and ResNext-101 backbones, respectively.

Datasets: We use the COCO [13] dataset, one of the most widely used detection

datasets which provides ground-truth annotations for 80 object classes, for all four

visual detection tasks that we are interested in. The training and testing sets of the

used models are COCO 2017 train (∼ 118k images) and COCO 2017 val (5k images).

Note that the panoptic segmentation task additionally requires the annotation of the

’stuff’ classes, which are not included in the 80 object classes. Hence, for panoptic

segmentation, we follow the configuration of detectron2, where 53 additional stuff

classes are acquired from the COCO-stuff dataset [46].

Performance Measures: On tasks with hard-predictions (i.e. panoptic segmenta-

tion), we compare LRP with PQ. On the remaining three tasks, namely object detec-

tion, keypoint detection and instance segmentation, all of which are soft-prediction

tasks, we compare LRP with AP. Since AP does not explicitly have performance

components, we include the following measures to facilitate comparison:

1. AP75, in which τ , the TP validation threshold, is 0.75. AP75 is a popular mea-

sure to represent the localisation accuracy of a method.

2. AP50, to represent the classification component.

3. ARC
r (Average Recall) where r is the number of top-scoring detections to in-

clude in the computation of AR. Note that ARC
r is also COCO-style (i.e. aver-

aged over 10 τ thresholds - see the definition of COCO-style AP, denoted by

APC, in Section 5.3).
3 One exception is aLRP Loss, for which we use our own implementation.
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Table 5.3: The repositories of models that we downloaded, evaluated and utilized for

comparison. The only exception is aLRP Loss [156], for which we used our own

implementation [162]. The models are listed in alphabetical order.

Repository Method

mmdetection [100]

ATSS [42]

Cascade Mask R-CNN [20]

Cascade R-CNN [20]

FCOS [160]

FreeAnchor [39]

GHM [68]

Grid R-CNN [163]

Guided Anchoring [75]

Hybrid Task Cascade [34]

Libra R-CNN [32]

Mask R-CNN [35]

Mask Scoring R-CNN [41]

NAS-FPN [88]

RPDet [164]

SSD [24]

detectron [161]
Faster R-CNN[19]

RetinaNet [18]

detectron2 [14]
Keypoint R-CNN

Panoptic FPN [115]

5.7.2 Evaluating Soft Predictions on Object Detection, Keypoint Detection and

Instance Segmentation Tasks

This section compares oLRP with AP&AR variants for soft predictions and shows

that oLRP is more discriminative and interpretable. The structure of this section is

based on the limitations (Section 5.1.2) and analysis of AP (Section 5.3.2) in terms

of the important features (Section 5.1.1). While demonstrating these limitations and

comparing with oLRP, we use both detector-level results (Table 5.4) and class-level
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(d) Broccoli

Figure 5.6: Example PR curves for four classes. The curves are drawn for τ =

0.50. The lines with different red tones represent one-stage detectors whereas those

with blue tones correspond to two-stage detectors. While AP50 considers the area

under the curve, LRP combines localisation, recall and precision errors, and hence

optimal LRP points, marked with crosses, are found in the top right part of the curves.

Detailed results of “person” and “broccoli” can be found in Table 5.5. F. R-CNN:

Faster R-CNN, C. R-CNN: Cascade R-CNN.
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results (Table 5.5) of the SOTA methods. For the detector-level performance compar-

ison, we present the results of 32 SOTA visual detectors on all three visual detection

tasks. In order to provide insight on oLRP and its components and illustrate its usage

at the class level, we select a subset of six object detectors by ensuring diversity (e.g.

different backbones, one- and two-stage detectors, different assignment and sampling

strategies etc.) and evaluate their performance on “person” and “broccoli” classes.

5.7.2.1 Analysis with respect to Completeness

AP loosely includes the localisation quality (Section 5.3.2). Here we discuss the ben-

efits of directly using the localisation quality as an input to the performance measure.

Firstly, to see how AP50 fails to include localisation quality precisely, we consider

the following three detectors with equal AP50 (63.7%) in Table 5.4: Faster R-CNN

(X101-12), Libra R-CNN and Guided Anchoring. oLRP and APC, which take into

account the localisation quality, rank these three detectors differently (Table 5.4).

Therefore, AP50 should not be selected as the single performance measure for bench-

marking since it neglects localisation.

To illustrate the drawback of APC or AP75 in terms of localisation, note that while

neither APC nor AP75 assigns the largest performance value to NAS-FPN among one-

stage object detectors, this detector has the least average localisation error (oLRPLoc

- see Table 5.4): e.g. GHM outperforms NAS-FPN by 1.1% in terms of AP75, while

its average localisation performance is 0.8% lower than NAS-FPN. Therefore, APC

and AP75, too, may fail to appropriately compare methods in terms of localisation

quality.

Using oLRP is easier and more intuitive than using the AP variants mentioned above:

(i) Unlike these AP variants, oLRP Error consistently and precisely (not loosely)

combines localisation, FP and FN errors, and in this case, the performance gap be-

tween NAS-FPN and GHM reduces to 0.4% in terms of oLRP (i.e. while GHM

outperforms NAS-FPN by 1.1% with respect to APC) thanks to the localisation per-

formance of NAS-FPN. (ii) Different from all AP variants, oLRPLoc quantifies the

localisation error precisely and allows direct comparison among methods, classes,
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etc.: e.g. NAS-FPN outperforms GHM by 0.8% in terms of oLRPLoc. (iii) One can

easily interpret oLRPLoc both at the class- and detector-level: for example, for ATSS,

IoU is 1 − 0.154 = 0.846 and 1 − 0.201 = 0.799 for the “person” and “broccoli”

classes respectively (Table 5.5).

Finally, being an interpretable localisation measure, oLRPLoc can facilitate analysis

of detectors. For example, in Table 5.4, we can easily notice for oLRPLoc that instance

segmentation task has room for improvement in terms of localisation compared to

other tasks. In particular, even the best performing instance segmentation method,

Hybrid Task Cascade (HTC), yields 17.0% oLRPLoc error which corresponds to a

mediocre localisation error for the object detectors and keypoint detectors, typically

achieving 14.3% and 11.7% oLRPLoc errors, respectively. With this 17.0%, HTC

has a similar localisation performance with RetinaNet (R50-24) in terms of oLRPLoc.

Again, HTC outperforms RetinaNet (R50-24) by around 10% AP75, suggesting that

the same deduction cannot be obtained by AP75.

5.7.2.2 Analysis with respect to Interpretability

This section presents insights about the interpretability of oLRP Error compared to

AP (see Section 5.3.2 for a discussion on the limited interpretability of AP).

While any AP variant does not provide insight on the performance of an object detec-

tor, the components of oLRP provide useful insight on the performance. To illustrate,

we compare two object detectors with equal APC, ATSS and Faster R-CNN (R101-

12) (see in Table 5.4 that both have 39.4% APC), using AP & AR based measures

and oLRP&components as follows:

• Faster R-CNN (R101-12) outperforms ATSS by 3.6% and 0.6% in terms of both

AP50 and AP75 and ATSS outperforms Faster R-CNN (R101-12) by around

6% with respect to ARC
100. Note that a clear conclusion (i.e. quantifying which

detector is better on which performance aspect) is not possible with these AP

& AR based measures since AP50 and AP75 are combinations of precision &

recall and ARC
100 a combination of recall & localisation quality.

• As for oLRP, Faster R-CNN (R101-12) outperforms ATSS by 6.1% and 2.3%
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in terms of FP and FN Errors respectively, and ATSS has 1.8% better localisa-

tion performance than Faster R-CNN (R101-12). Since each component cor-

responds to one performance aspect, one can easily deduce that while Faster

R-CNN has better classification performance (wrt. both precision and recall),

ATSS localises objects better. Overall, combining these components consis-

tently, in this case, oLRP prefers Faster R-CNN (R101-12) over ATSS by 1.1%

while they have the same APC.

In addition, oLRPFP and oLRPFN provide insight on the structure of the PR curve

by representing the point on the PR curve where the minimal LRP is achieved. To

illustrate, for all methods, the “person” class has lower FP & FN error values than the

“broccoli” class, implying the oLRP point of the “person” PR curve to be closer to the

top-right corner. To see this, note that Faster R-CNN has 11.1% and 27.7% FP and FN

error values, respectively for the “person” class (Table 5.5). Thus, without looking

at the curve, one may conclude that the oLRP point resides at 1 − 0.111 = 0.889

precision and 1 − 0.277 = 0.723 recall. For the “broccoli” curve, the oLRP point

is achieved at 1 − 0.492 = 0.508 and 1 − 0.484 = 0.516 as precision and recall,

respectively. Unlike the “person” class, these values suggest that the optimal point

of the “broccoli” class is around the center of the PR range (cf. Fig. 5.6(a) and

(d)). Hence, oLRPFP and oLRPFN are also easily interpretable and in such a way,

exhaustive examination of PR curves can be alleviated.

Similar to oLRPloc, oLRPFP and oLRPFN facilitate analysis as well, which is not

straightforward by using AP&AR based measures. Suppose that we want to com-

pare precision and recall performances of the visual object detectors. Comparing

oLRPFP and oLRPFN, it is obvious that current object detectors have significantly

lower precision error than recall error (i.e. oLRPFP − oLRPFN is around 15% to 20

% for object detection and instance segmentation, 7% to 8 % for keypoint detection

- see Table 5.4). Given AP&AR based measures, one alternative can be to compare

AP50 with ARC
100, which is again hampered by the loose and indirect combination

of the performance aspects: Note that while oLRPFP and oLRPFN, isolating errors

with respect to performance aspects, assign significantly more recall error than pre-

cision error for ATSS (oLRPFN − oLRPFP = 16.5% - see Table 5.4), AP- and AR-

based performance measures favor recall performance over precision performance
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Figure 5.7: The effect of interpolating the PR curve on APC on (a) the “person” class,

the class with the most number of examples, (b) the “toaster” class, the class with the

least number of examples. Red: AP without interpolation. Blue: Additional APC

after interpolation. The numbers on the bars indicate this additional APC points due

to interpolation. While the effect of interpolation is negligible for the “person” class,

there is a significant effect of interpolation (i.e. 2.2% APC on average, up to 6.2%)

on the performance of the toaster class (i.e. the class with the minimum number of

examples) for all the detectors. C.R-CNN: Cascade R-CNN, F.R-CNN: Faster R-

CNN.

(ARC
100 > AP50). Therefore, indirect contribution of the performance aspects makes

the analysis more difficult for AP- and AR-based measures, while oLRP and compo-

nents are easier to interpret and compare.

5.7.2.3 Analysis with respect to Practicality

This section presents how LRP variants can handle the practical disadvantages of AP

(see Section 5.3.2 for a discussion why AP is limited in these practical issues).

Evaluating Hard Predictions: We discuss how LRP evaluates hard predictions in

Section 5.7.3.

Thresholding Visual Object Detectors: We discuss our class-specific thresholding

approach using LRP-Optimal thresholds in Section 5.7.4.
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Figure 5.8: Class-level LRPFP vs. LRPFN comparison. Overall, there is a tendency

of larger LRPFN error than LRPFP error. This is more obvious for things classes. It

is not possible to make the same observation using RQ.

The Effect of Interpolation: In order to present the effect of interpolation on classes

with relatively fewer number of examples, we compute APC of the same six detectors

from class-level comparison table (Table 5.5) with and without interpolation on two

classes: (i) the “person” class as the class with maximum number examples in COCO

val 2017 (i.e. 21554 examples), and (ii) the “toaster” class , the class with the mini-

mum number of examples (i.e. 17 examples). The APC difference is presented in Fig.

5.7, in which the significant effect of interpolation on the class with the less number

of examples is clearly observed: (i) While the average APC difference over detectors

between with and without interpolation is almost negligible for person class (i.e. less

than 0.1% APC), it is around 35×more for the toaster class (2.2% APC), (ii) There is

even 6.2% jump for the aLRP Loss after interpolation. Note that this corresponds to

around a superficial 20% relative performance improvement (from 33.4% to 39.6%)

in terms of APC. Therefore, while the AP variants are sensitive to interpolation es-

pecially for the rare classes in the dataset, oLRP does not employ interpolation. This

issue of AP should especially be taken care of for visual detection datasets with rare

classes such as LVIS [45]. Note that unlike AP, oLRP computation is exact (Section

5.5.3).
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5.7.3 Evaluating Hard Predictions on Panoptic Segmentation Task

In this section, we apply LRP Error to panoptic segmentation task to present its abil-

ity to evaluate hard predictions and also compare LRP with PQ. In particular, we

evaluate three different variants of Panoptic FPN [115] using both LRP and PQ, and

present the results in Table 5.6 in three groups: (i) “All” includes all 133 classes,

(ii) “Things” includes 80 object classes, and (iii) “Stuff” includes the remaining 53

classes, normally counted as background by other detection tasks. Similar to oLRP,

we follow our analysis on PQ (Section 5.4.2) except the superiority of LRP on evalu-

ating and thresholding soft predictions, which we discuss in Sections 5.7.2 and 5.7.4

respectively.

5.7.3.1 Analysis with respect to Interpretability

The RQ component of PQ, the F-measure, does not provide discriminative informa-

tion on precision and recall errors. On the other hand, LRP presents more insight on

these errors with its FP and FN components. To illustrate, all Panoptic FPN variants

suffer from the recall error more than the precision error, and this is more obvious for

“things" classes: (i) Table 5.6 shows that LRPFN > LRPFP for all methods in class

groups. (ii) While the gap between LRPFP and LRPFN for “stuff” classes is around

10%, it is around 20% for “things” classes for all detectors. (iii) Finally, the same dif-

ference between “things” and “stuff” classes can easily be observed at the class-level

in Fig. 5.8 where the error is skewed towards LRPFN. Therefore, we argue that LRP

FP and FN components present more insight than RQ.

5.7.3.2 Analysis with respect to Practicality

Since the definitions of LRP and PQ are similar (Eq. 5.8), LRP and PQ generally rank

the detectors and classes similarly. However, we observed certain differences owing

to the over-promotion of TPs by PQ with its discontinuous nature: (i) We observed

that 205 pair of classes for which the evaluation results of LRP and PQ conflict (i.e.

(PQi < PQj) and (LRPj > LRPi) where the subscript represents the class label).

As expected (see also Fig. 5.4(a,c) and Fig. 5.5(c)), PQ favors classes with more TPs
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compared to LRP, and LRP favors the classes with better localisation performance.

(ii) In some cases, the difference between the results of AP and PQ (i.e. (PQi−PQj)−
(LRPj−LRPi)) can be large. For example, while the “bicycle” and “orange” classes

have 40.6% and 34.1% PQ respectively (i.e. “bicycle” outperforms by 6.5), their LRP

values are 82.4% and 81.5% (i.e. “orange” outperforms by 0.9%). Overall these imply

a 7.4% difference between AP and LRP. The over-promotion of TPs by PQ can also

be observed by examining its components: While the RQ of “bicycle” and “orange”

are 55.9% and 38.4% respectively (i.e. “bicycle” outperforms by 17.5%), SQ are

72.7% and 88.9% (i.e. “orange” outperforms by 16.2%). These results suggest that

while “bicycle” can be classified better than “orange”, the localisation performance

of “bicycle” is poorer. As a result, while LRP results are similar, PQ promotes the

class with better classification (i.e. “bicycle”) by 6.5% and assigns a lower priority to

localisation.

5.7.4 Thresholding Visual Object Detectors

In this section, we show that (i) the performances of visual detectors is sensitive to

thresholding, (ii) the thresholds need to be set in a class-specific manner and (iii)

LRP-Optimal thresholds can be used to alleviate this sensitivity.

Firstly, to see why visual object detectors can be sensitive to thresholding, Fig. 5.9

shows on the “person” class how performance (in terms of LRP and its components)

evolves with different score thresholds (s) on different detectors. We observe in Fig.

5.9(d) that the performances of some detectors (e.g ATSS, FCOS, aLRP Loss) im-

prove and degrade rapidly around s∗, a situation which implies the sensitivity of these

detectors with respect to the threshold choice (i.e. model selection). For example,

for ATSS, choosing a threshold larger than 0.50 has a significant impact on the per-

formance, and even a threshold larger than 0.75 results in a detector with no TPs.

Therefore, model selection is important for practical usage of object detectors.

Secondly, for a given detector, the variance of the LRP-Optimal thresholds over

classes can be large (Fig. 5.10- especially see RetinaNet in (b) and Cascade R-CNN

in (d)). Thus, a general, fixed threshold for all classes can not provide optimal perfor-

mance for all classes. Class-specific thresholding is required for optimal performance
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Figure 5.9: s-LRP curves of different object detectors for the “person” class. LRP

combines localisation error (a), precision error (b) and recall error (c) over entire s

domain in (d). The minimum-achievable LRP error in (d) is coined as oLRP (i.e.

marked by “x”). Note that for some detectors (e.g. ATSS), the performance with

respect to s changes abruptly in (d), hence, for some object detectors, the performance

is very sensitive to thresholding. The lines with a different red tone represent a one-

stage detector, while blue tones correspond to two-stage detector F. R-CNN: Faster

R-CNN, C. R-CNN: Cascade R-CNN

of visual object detectors.

Based on these observations, in Appendix H, we present a use-case of LRP-Optimal
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Thresholds on a video object detector which, first, collects thresholded detections

from a conventional object detector, and then associates detection results between

frames. On this use-case, we show that using class-specific LRP-Optimal thresholds

significantly improves performance (up to around 9 points AP50 and 4 points oLRP)

compared to using general, class-independent thresholding.
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Figure 5.10: The distributions of the class-specific LRP-Optimal Thresholds (s∗) for

different methods. The variance of the LRP-Optimal thresholds can be large among

classes. Thus, using a single general threshold for all classes will provide sub-optimal

results.
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5.8 Conclusion

In this chapter, we introduced a novel performance metric, LRP Error, to evaluate all

visual detection tasks as an alternative to the widely-used measures AP and PQ. LRP

Error has a number of advantages which we demonstrated in this chapter: LRP Error

(i) is “complete” in the sense that it precisely takes into account all important perfor-

mance aspects (i.e. localisation quality, recall, precision) of visual object detectors,

(ii) is easily interpretable through its components, and (iii) does not suffer from the

practical drawbacks of AP and PQ.
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CHAPTER 6

IDENTITY UPDATE: USING ERROR-DRIVEN UPDATE WITH

BACKPROPAGATION TO OPTIMISE RANKING-BASED LOSS

FUNCTIONS

Ranking two numbers, ni and nj , is an essential operation indicating whether nj is

larger than ni or not:

Ψ(ni, nj) =

1, if nj ≥ ni

0, otherwise,
(6.1)

and accordingly, we can classify the set of loss functions requiring this ranking op-

eration to supervise deep learning models as ranking-based loss functions. The main

characteristic of these loss functions is their ranking-based error definitions. In par-

ticular, assuming that a classifier generates two outputs, ŝi and ŝj , as the predictions

corresponding to different classes and ŝi is the ground truth class; a ranking-based

loss function supervises the model following a ranking error to increase ŝi (i.e. pro-

mote i) and/or decrease ŝj (i.e. promote j) when the ground class is not the predicted

class (i.e. ŝi ≤ ŝj) and assigns no error when the input is classified accurately (i.e.

ŝi > ŝj).

Using the performance measures of visual detectors (e.g. AP and LRP) as ranking-

based loss functions (see Chapter 5 for their definitions) is promising since (i) the

network is, then, supervised as it is tested, (ii) the aforementioned ranking-based error

definition has the potential to inherently handle severe class imbalance and (iii) the

performance measures typically do not have hyper-parameters, thereby alleviating the

tuning challange of visual detectors (Chapter 1). On the other hand, due to its piece-

wise linearity, the derivative of Eq. 6.1 wrt. its inputs is either 0 or∞ making direct

incorporation of such losses in Stochastic Gradient Descent using backpropagation
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infeasible.

Recently, Chen et al. [37] show that AP can be optimised by employing the error-

driven optimisation from Perceptron Learning [44]. Their AP Loss is a ranking-based

loss function to optimise the ranking of the classification outputs, and as expected,

it provides balanced training between positives and negatives with less number of

hyper-parameters than its score-based counterpart Focal Loss [18] (i.e. 1 vs. 2 hyper-

parameters).

In this chapter, we first revisit how AP Loss is computed and optimised (Section 6.1)

by Chen et al. [37]; then in Section 6.2, we identify the drawbacks of this computa-

tion and optimisation and propose our Identity Update as a more general and simple

method to optimise ranking-based loss functions. We also prove that the loss func-

tions optimised by our Identity Update has a natural balance between positives and

negatives during training in terms of gradient magnitudes. Finally, in Section 6.3, we

compute and obtain the gradients of AP Loss following our Identity Update as an ex-

ample on how our method simplifies the optimisation of ranking-based loss functions.

As for the generalization, we compute and optimise our aLRP and RS Losses respec-

tively as more complex loss functions than AP Loss in Chapters 7 and 8 respectively.

This chapter basically combines our findings in our two previous papers, aLRP Loss

[156] and RS Loss [165].

6.1 Previous Work: Definition, Computation and Optimisation of AP Loss

Definition of AP Loss. AP Loss [37] directly optimises the following loss for AP

with IoU thresholded at 0.50:

LAP = 1− AP50 = 1− 1

|P|
∑
i∈P

precision(i) = 1− 1

|P|
∑
i∈P

rank+(i)

rank(i)
, (6.2)

whereP is the set of positive examples identified based on the assignments of the pro-

posals (i.e. anchors/points/RoIs); rank+(i) and rank(i) are respectively the ranking

positions of the ith sample among positives and all samples. rank+(i) and rank(i)

can be easily defined using the ranking operation Ψ(0, xij) (Eq. 6.1), which compares
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the difference transforms,

xij = ŝj − ŝi, (6.3)

between the logit of ith prediction (ŝi) and the logit of each other sample (j ∈ P ∪N
for rank(i) and j ∈ P for rank+(i)) with 0. More particularly, rank(i)1 is:

rank(i) =
∑

j∈P∪N

H(xij), (6.4)

where, in practice, H(xij) is a smoothed version of Ψ(0, xij) around 0,

H(xij) =


0, xij < −δ
xij
2δ

+ 0.5, −δ ≤ xij ≤ δ

1, δ < xij.

(6.5)

such that δ aims to enforce a margin between ŝi and ŝj and N is the set of negatives.

rank+(i) can be defined similarly over j ∈ P:

rank(i) =
∑
j∈P

H(xij). (6.6)

Computation of AP Loss (Forward Pass): Chen et al. [37] introduced “primary

terms” (Lij) of AP Loss as the “activation function” applied to each difference trans-

form, xij , and then, aimed to rewrite the loss value, LAP, as the normalized summa-

tion over all primary terms. Following Eq. 6.2, the primary terms of AP loss can be

1 While AP Loss [37] and our earlier work [156] added 1 for the example itself in rank-based function
computations (e.g. rank(i) = 1 +

∑
j∈P∪N ,i 6=j

H(xij)); for clarity and consistency in terms of the contribution of

examples, we included the contribution of the example itself similar to all other examples by applying H(·) in our
most recent paper, RS Loss [165]. Eq. 6.4 sets an example on rank(i).
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obtained using algebraic manipulations as follows:

LAP = 1− 1

|P|
∑
i∈P

rank+(i)

rank(i)
(6.7)

=
1

|P|
∑
i∈P

rank(i)− rank+(i)

rank(i)
(6.8)

=
1

|P|
∑
i∈P

∑
j∈P∪N

H(xij)−
∑
j∈P

H(xij)

rank(i)
(6.9)

=
1

|P|
∑
i∈P

∑
j∈N

H(xij)

rank(i)
(6.10)

=
1

|P|
∑
i∈P

∑
j∈N

H(xij)

rank(i)
(6.11)

=
1

|P|
∑
i∈P

∑
j∈N

Lij, (6.12)

where the resulting primary term turns out to be,

Lij =
H(xij)

rank(i)
. (6.13)

Note that when i /∈ P or j /∈ N , no error needs to be added to LAP due to the indices

of the summations (Eq. 6.12). This is imposed by an additional variable, αij2, and

then AP Loss can be expressed in the desired form, that is the normalized summation

over all pairs, as follows:

LAP =
1

|P|
∑

i∈P∪N

∑
j∈P∪N

Lijαij. (6.14)

To provide a more general overview, we can summarize the computation of AP Loss

during training (i.e. the forward pass) in three steps (Fig. 6.1 green arrows): (1) Given

model outputs, the difference transforms are obtained; (2) given difference transforms

the primary terms are obtained and (3) given primary terms the loss value is obtained.

Optimisation of AP Loss (Backward Pass): Here, the aim is to find updates ∂L
∂ŝi

,

and then proceed with backpropagation through model parameters. Among the three

computation steps, Step 1 and Step 3 are differentiable, whereas a primary term Lij

is not a differentiable function of difference transforms (Fig. 6.1 orange arrows).
2 this is denoted by yij by Chen et al. [37]
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Denoting this update in xij by ∆xij and using the chain rule, ∂L
∂ŝi

can be expressed as:

∂L
∂ŝi

=
∑
j,k

∂L
∂Ljk

∆xjk
∂xjk
∂ŝi

=
1

Z

( ∑
j∈P∪N

∆xji −
∑

j∈P∪N

∆xij

)
. (6.15)

Inspired by error-driven update [44]3, Chen et al. [37] showed that the following

update can be used to optimise AP Loss,

∆xij = −(L∗ijαij − Lijαij), (6.16)

where L∗ij is the target primary term indicating the desired/target error for pair (i, j).

Note that the target primary term of AP Loss is always L∗ij = 0 since there is no error

when a positive is ranked above negative for AP Loss.

6.2 Identity Update to Compute and Optimise Ranking-based Loss Functions

While the formulation to compute and optimise AP Loss enabled a ranking-based loss

function to achieve similar performance with its score-based counterpart (i.e. Focal

Loss) for the first time; it can not be generalized over different ranking-based loss

functions easily. In particular, it has the following drawbacks: (D1) The resulting

loss value (L) does not consider the target L∗ij , and thus, is not easily interpretable

when L∗ij 6= 0 (cf. our aLRP Loss [156] and RS Loss [165]). These errors become

especially important with continuous labels as in our RS Loss: The larger the label

of i ∈ P , the larger should ŝi be, and (D2) identifying the primary terms is espe-

cially a challenge when there are intra-class errors (e.g. the sorting error of our RS

Loss [165]) and also requires a careful derivation (Eq. 6.7-6.14), which may also

requires additional parameter (e.g. αij in Eq. 6.14). Both (D1) and (D2) imply that

the optimisation method is specifically designed for AP Loss and its generalization

over different ranking-based losses is not straightforward. Having observed these

limitations, we address (D1) and (D2) by our Identity Update, a general and simple

framework to compute and optimise ranking-based loss functions.

Definition of the Ranking-based Loss Function. We define a ranking-based loss
3 Note that the perceptron update rule is wnew = wold + (e∗ − e)x where e is the error, e∗ is the target error

and x is the input. Then assuming the input, x = 1, and reorganising the update rule to align it with that of SGD
update, we have wnew = wold − (−(e− e∗)) and −(e− e∗) can be exploited as the update. Also see the work
of Chen et al. [37].
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Figure 6.1: Three-step computation (green arrows) and optimisation (orange arrows)

algorithms of ranking-based loss functions. Our identity update (i) yields inter-

pretable loss values (see Appendix M for an example on our RS Loss) since target

primary term is guaranteed to be 0, thus the primary terms corresponds to the error

between current value and target value (see our loss definition in Eq. 6.17, and the

resulting primary term definition in Eq. 6.18), (ii) introduces a definition of primary

terms (Eq. 6.18–green arrow in Step 2), instead of cumbersome derivation (e.g. the

derivation of the primary terms of AP Loss [37] is presented in Eq. 6.7-6.14). Fur-

thermore, our primary term definition does not require additional parameters such as

αij in Eq. 6.14, and also allows intra-class errors, crucial to model our RS Loss, and

(iii) results in a simple “Identity Update” rule (orange arrow in Step 2): ∆xij = Lij .

To sum up, “Identity Update” only requires identifying primary terms, which are also

explicitly defined (Eq. 6.18), both to compute and to optimise a ranking-based loss

function.

function as:

L =
1

Z

∑
i∈P∪N

(`(i)− `∗(i)), (6.17)

where Z is a problem specific normalization constant, and `(i) and `∗(i) are the error

term and desired error term computed on i respectively. Our loss definition has two

benefits: (i) L directly measures the difference between the target and the desired er-

rors, yielding an interpretable loss value to address (D1), and (ii) we do not constrain

L to be defined only on positives and replace “i ∈ P" with “i ∈ P∪N ". Although we

do not use “i ∈ P ∪N " to model our loss functions (aLRP and RS Losses), it makes

the definition of L complete in the sense that, if necessary to obtain L, individual

errors (`(i)) can be computed on each output, and hence, a larger set of ranking-based
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loss functions can be represented.

Computation of the Ranking-based Loss Function (Forward Pass). Similar to

Chen et al. [37], we follow the same three-step computation algorithm, but differently

our goal is to express L as a sum of primary terms in a more general form than Eq.

6.12 given a ranking-based loss function following Eq. 6.17.

Definition 2. The primary term Lij concerning examples i ∈ P ∪N and j ∈ P ∪N
is the loss originating from i and distributed over j via a probability mass function

p(j|i). Formally,

Lij = (`(i)− `∗(i)) p(j|i). (6.18)

Then, as desired, we can express L as a summation of Lijs:

Theorem 1. L = 1
Z

∑
i∈P∪N

∑
j∈P∪N

Lij .

Proof. The definition of the loss function L,

L =
1

Z

∑
i∈P∪N

(`(i)− `∗(i)), (6.19)

can be expressed by using the fact that p(j|i) is a pmf, and thus
∑

j∈P∪N
p(j|i) = 1 as:

L =
1

Z

∑
i∈P∪N

(`(i)− `∗(i))
∑

j∈P∪N

p(j|i). (6.20)

Reorginizing the terms and using the definition of the primary term (Eq. 6.18) con-

clude the proof,

L =
1

Z

∑
i∈P∪N

∑
j∈P∪N

(`(i)− `∗(i))p(j|i) (6.21)

=
1

Z

∑
i∈P∪N

∑
j∈P∪N

Lij. (6.22)

Note that our primary term definition in Eq. 6.18 makes it easier to obtain primary

terms addressing (D2) and free from cumbersome derivations (e.g. Eq. 6.7-6.14) and

additional variables (e.g. αij in Eq. 6.14). As a result, using 6.18 in three-step algo-

rithm (Fig. 6.1 green arrows), one can easily compute the loss value during training.
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Furthermore, with this definition, we add more flexibility on the error distribution:

e.g., AP Loss takes p(j|i) = H(xij)/NFP(i), which distributes error uniformly (since

it is reduced to 1/NFP(i)) over j ∈ N with ŝj ≥ ŝi; though, a skewed p(j|i) can be

used to promote harder examples (i.e. larger xij). Here, NFP(i) =
∑

j∈N H(xij) is

the number of false positives for i ∈ P .

Optimisation of the Loss (Backward Pass). Since the error of a pair, Lij , is min-

imized when `(i) = `∗(i), Eq. 6.18 has a target of L∗ij = 0 regardless of L. Thus,

∆xij in Eq. 6.15 is simply the primary term itself:

∆xij = −(L∗ij − Lij) = −(0− Lij) = Lij. (6.23)

Therefore, replacing ∆xij by Lij in Eq. 6.15,

∂L
∂ŝi

=
1

Z

( ∑
j∈P∪N

Lji −
∑

j∈P∪N

Lij

)
, (6.24)

concluding the derivation of our Identity Update. The steps for obtaining the gradients

of L are summarized in Algorithm 3.

Algorithm 3 Obtaining the gradients of a ranking-based function with Identity Up-

date.

Input: A ranking-based function L = (`(i), `∗(i), Z), and a probability mass

function p(j|i)
Output: The gradient of L with respect to model output ŝ

1: ∀i, j find primary term, Lij , using Eq. 6.18.

2: return 1
Z

(
∑

j∈P∪N
Lij −

∑
j∈P∪N

Lji) for each ŝi ∈ ŝ (c.f. Eq. 6.24).

Finally, we show that Identity Update provides balanced training for ranking-based

losses conforming to Theorem 1:

Theorem 2. Training is balanced between positive and negative examples at each

iteration; i.e. the magnitude of the total gradients of positives and negatives are

equal: ∣∣∣∣∣∑
i∈P

∂L
∂ŝi

∣∣∣∣∣ =

∣∣∣∣∣∑
i∈N

∂L
∂ŝi

∣∣∣∣∣. (6.25)
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Proof. We first obtain the total gradients of positives and negatives, and then finally it

turns out that the magnitude of the total gradients of positives has the same magnitude

with that of negatives, but in opposite directions.

The total gradients of positives. By algebraically manipulating Eq. 6.24, we can

obtain the following simplified form for the total gradients of positive examples.∑
i∈P

∂L
∂ŝi

=
∑
i∈P

1

Z

( ∑
j∈P∪N

Lji −
∑

j∈P∪N

Lij

)
(6.26)

=
1

Z

(∑
i∈P

∑
j∈P∪N

Lji −
∑
i∈P

∑
j∈P∪N

Lij

)
(6.27)

=
1

Z

(∑
i∈P

∑
j∈P

Lji +
∑
i∈P

∑
j∈N

Lji −
∑
i∈P

∑
j∈P

Lij −
∑
i∈P

∑
j∈N

Lij

)
(6.28)

=
1

Z

(∑
i∈P

∑
j∈N

Lji −
∑
i∈P

∑
j∈N

Lij

)
(6.29)

The total gradients of negatives. Similar to positives, we obtain the total gradients

of positives as follows:∑
i∈N

∂L
∂ŝi

=
∑
i∈N

1

Z

( ∑
j∈P∪N

Lji −
∑

j∈P∪N

Lij

)
(6.30)

=
1

Z

(∑
i∈N

∑
j∈P∪N

Lji −
∑
i∈N

∑
j∈P∪N

Lij

)
(6.31)

=
1

Z

(∑
i∈N

∑
j∈P

Lji +
∑
i∈N

∑
j∈N

Lji −
∑
i∈N

∑
j∈P

Lij −
∑
i∈N

∑
j∈N

Lij

)
(6.32)

=
1

Z

(∑
i∈N

∑
j∈P

Lji −
∑
i∈N

∑
j∈P

Lij

)
. (6.33)

Interchanging i by j and reorganizing summations, we have:∑
i∈N

∂L
∂ŝi

=
1

Z

(∑
i∈P

∑
j∈N

Lij −
∑
i∈P

∑
j∈N

Lji

)
. (6.34)

Concluding the proof. Considering Eq. 6.29 and Eq. 6.34, one can note that the

magnitude of the total gradients of positives has the same magnitude with that of

negatives, but in opposite directions:

∑
i∈P

∂L
∂ŝi

= −
∑
i∈N

∂L
∂ŝi

, (6.35)
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which implies their magnitudes to be equal, concluding the proof.∣∣∣∣∣∑
i∈P

∂L
∂ŝi

∣∣∣∣∣ =

∣∣∣∣∣∑
i∈N

∂L
∂ŝi

∣∣∣∣∣, (6.36)

Furthermore, note that when the errors are computed only on positives (i.e. the loss

function has the form ofL = 1
Z

∑
i∈P

(`(i)−`∗(i)) as our aLRP Loss and RS Loss in this

thesis, and also AP Loss),
∑
i∈P

∑
j∈N

Lji = 0 in Eq. 6.29 and Eq. 6.34. Also noting that,

Lij ≥ 0 (Eq. 6.18), we can present a stricter equality than Theorem 2, indicating that

the summed gradient magnitudes for positives and negatives are equal in that case as

follows: ∑
i∈P

∣∣∣∣∂L∂ŝi
∣∣∣∣ =

∑
i∈N

∣∣∣∣∂L∂ŝi
∣∣∣∣. (6.37)

6.3 A Case Study: Optimising AP Loss by Identity Update

Let us derive AP Loss as a case example for our Identity Update. To begin with

the definition of the loss function (Eq. 6.17), `AP(i) is simply 1 − precision(i) =

NFP(i)/rank(i), and Z = |P|. The target of AP Loss is to rank a positive above all

negative examples, implying `AP(i)∗ = 0.

Then, we obtain the primary terms (Eq. 6.18) simply based on the definition of the

loss function by assuming p(j|i) to be uniform, i.e. p(j|i) = H(xij)/NFP(i). These

give us Lij = NFP(i)
rank(i)

H(xij)

NFP(i)
=

H(xij)

rank(i)
(c.f. Lij in Eq. 6.12), which is directly used both

to compute and to optimise AP Loss, thereby simply completing the derivation.
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CHAPTER 7

AVERAGE LOCALISATION-RECALL-PRECISION LOSS: A

RANKING-BASED, BALANCED LOSS FUNCTION UNIFYING

CLASSIFICATION AND LOCALISATION IN OBJECT DETECTION

In this chapter, we present our average Localisation-Recall-Precision Loss. This

chapter is based on our work,

• Kemal Oksuz, Baris Can Cam, Emre Akbas* and Sinan Kalkan∗, “A Ranking-

based, Balanced Loss Function Unifying Classification and Localisation in

Object Detection”, Advances on Neural Information and Processing Systems

(NeurIPS), 2020 (Spotlight paper).

Different from the paper, we exclude the section on background on LRP and AP Loss,

which are comprehensively discussed in Chapters 5 and 6 of this thesis respectively.

When needed, we provide cross-references to the relevant material in the previous

chapters. Additionally, for clarity, the optimisation algorithm used to optimise aLRP

Loss, “A Generalisation of Error-Driven Optimisation for Ranking-Based Losses”,

is discussed in Appendix I since a more general form of optimisation ranking-based

loss functions is introduced in Chapter 6 of this thesis as “Identity Update”. Note

that both of our optimisation algorithms (a generalization of error-driven optimisation

and Identity Update) provide the same gradient values, hence the results remain the

same in this chapter regardless of the optimisation algorithm. We also demonstrate in

Appendix J to define and obtain the gradients of aLRP Loss using our Identity Update

as an additional use-case to AP Loss (Section 6.3) and our RS Loss (Chapter 8). Apart

from these modifications, we make minor changes to fit the text appropriately in the
∗ Equal contribution for senior authorship.
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context of this thesis. Finally, within the scope of this project, the usage of robust

box regression losses with aLRP Loss (e.g. GIoU Loss [93], DIoU Loss [94]) is

contributed by Baris Can Cam, and accordingly included in his MS thesis [166] (see

the discussion after Eq. 7.3).

7.1 Introduction

Object detection requires jointly optimising a classification objective (Lc) and a lo-

calisation objective (Lr) combined conventionally with a balancing hyperparameter

(wr) as follows:

L = Lc + wrLr. (7.1)

Optimising L in this manner has three critical drawbacks: (D1) It does not corre-

late the two tasks, and hence, does not guarantee high-quality localisation for high-

precision examples (Fig. 7.1). (D2) It requires a careful tuning of wr [39, 40, 93],

which is prohibitive since a single training may last on the order of days, and ends

up with a sub-optimal constant wr [167, 168]. (D3) It is adversely impeded by the

positive-negative imbalance in Lc and inlier-outlier imbalance in Lr, thus it requires

sampling strategies [18, 68] or specialized loss functions [22, 32], introducing more

hyperparameters (Table 1.1).

A recent solution for D3 is to directly maximize Average Precision (AP) with a loss

function called AP Loss [37]. AP Loss is a ranking-based loss function to optimise the

ranking of the classification outputs and provides balanced training between positives

and negatives.

In this chapter, we extend AP Loss to address all three drawbacks (D1-D3) with one,

unified loss function called average Localisation Recall Precision (aLRP) Loss. In

analogy with the link between precision and AP Loss, we formulate aLRP Loss as the

average of LRP values [107] over the positive examples on the Recall-Precision (RP)

curve. aLRP has the following benefits: (i) It exploits ranking for both classification

and localisation, enforcing high-precision detections to have high-quality localisation

(Fig. 7.1). (ii) aLRP has a single hyperparameter (which we did not need to tune)

as opposed to ∼ 7 in state-of-the-art loss functions (Table 1.1). (iii) The network is
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Ranking

Assume 5 GTs

Loss Values

Ours

Detector 

Output

Cross 

Entropy

AP 

Loss

L1

Loss

IoU

Loss

aLRP

Loss

(C & R1) 0.87 0.36 0.29 0.28 0.53

(C & R2) 0.87 0.36 0.29 0.28 0.69

(C & R3) 0.87 0.36 0.29 0.28 0.89

(b) Performance in AP = (AP50+AP65+AP80+AP95)/4

Detector 

Output
AP50 AP65 AP80 AP95 AP

(C & R1) 0.51 0.43 0.33 0.20 0.37

(C & R2) 0.51 0.39 0.24 0.02 0.29

(C & R3) 0.51 0.19 0.08 0.02 0.20

Input 

Anchors

Classifier Output 

(C)

Three Possible Localization Outputs

Pos. Correlated 

with C (R1)

Uncorrelated 

with C (R2)

Neg. Correlated 

with C (R3)

Score Rank IoU Rank IoU Rank IoU Rank

a1 1.00 1 0.95 1 0.80 2 0.50 4

a2 0.90 -- -- -- -- -- -- --

a3 0.80 2 0.80 2 0.65 3 0.65 3

a4 0.70 -- -- -- -- -- -- --

a5 0.60 -- -- -- -- -- -- --

a6 0.50 3 0.65 3 0.50 4 0.80 2

a7 0.40 -- -- -- -- -- -- --

a8 0.30 -- -- -- -- -- -- --

a9 0.20 -- -- -- -- -- -- --

a10 0.10 4 0.50 4 0.95 1 0.95 1

L1 Loss: 0.0025+0.10+0.175+0.25

aLRP Loss(1): 0.10/1 + (1+0.10+0.40)/3+(3+0.1+0.4+0.7)/6+(6+0.1+0.4+0.7+1)/10= 

0.1+0.5+0.7+0.82=2.12/4=0.53

aLRP Loss(1): 0.40/1 + (1+0.40+0.70)/3+(3+1.+0.4+0.7)/6+(6+0.1+0.4+0.7+1)/10= 

0.4+0.7+0.85+0.82=2.77/4=0.6925

aLRP Loss(3): 1/1 + (1+1+0.70)/3+(3+1+0.7+0.4)/6+(6+0.1+0.4+0.7+1)/10= 

1+0.90+0.85+0.82=0.8925

(a) 3 possible localization outputs (R1-R3) for the same classifier output (C)

(Orange: Positive anchors, Gray: Negative anchors)

(c) Comparison of different loss functions 

(Red: Improper ordering, Green: Proper ordering)

Figure 7.1: aLRP Loss enforces high-precision detections to have high-IoUs, while

others do not. (a) Classification and three possible localisation outputs for 10 anchors

and the rankings of the positive anchors with respect to (wrt) the scores (for C) and

IoUs (for R1, R2 and R3). Since the regressor is only trained by positive anchors, “–”

is assigned for negative anchors. (b,c) Performance and loss assignment comparison

of R1, R2 and R3 when combined with C. When correlation between the rankings

of classifier and regressor outputs decreases, performance degrades up to 17 AP (b).

While any combination of Lc and Lr cannot distinguish them, aLRP Loss penalizes

the outputs accordingly (c). The details of the calculations are presented in the Section

1 of Supp.Mat. in our paper [156] and excluded in this thesis.

trained by a single loss function that provides provable balance between positives and

negatives. Replacing AP and SmoothL1 losses by aLRP Loss for training RetinaNet

improves the performance by up to 5.4AP, and our best model reaches 48.9AP without

test time augmentation, outperforming all existing one-stage detectors with significant

margin.

7.2 Related Work

Balancing Lc and Lr in Eq. 7.1, an open problem in object detection (OD) [142],

bears important challenges: Disposing wr, and correlating Lc and Lr. Classification-

aware regression loss [33] links the branches by weighing Lr of an anchor using its
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classification score. Following Kendall et al. [168], LapNet [167] tackled the chal-

lenge by making wr a learnable parameter based on homoscedastic uncertainty of

the tasks. Other approaches [92, 130] combine the outputs of two branches during

non-maximum suppression (NMS) at inference. Unlike these methods, aLRP Loss

considers the ranking wrt scores for both branches and addresses the imbalance prob-

lem naturally.

Ranking-based objectives in OD: An inspiring solution for balancing classes is to

optimise a ranking-based objective. However, such objectives are discrete wrt the

scores, rendering their direct incorporation challenging. A solution is to use black-

box solvers for an interpolated AP loss surface [169], which, however, provided only

little gain in performance. AP Loss [37] takes a different approach by using an error-

driven update mechanism to calculate gradients (Sec. 6.2). An alternative, DR Loss

[70], employs Hinge Loss to enforce a margin between the scores of the positives and

negatives. Despite promising results, these methods are limited to classification and

leave localisation as it is. In contrast, we propose a single, balanced, ranking-based

loss to train both branches.

7.3 Average Localisation-Recall-Precision (aLRP) Loss

Similar to the relation between precision and AP Loss, aLRP Loss is defined as the

average of LRP values (`LRP(i)) of positive examples:

LaLRP :=
1

|P|
∑
i∈P

`LRP(i). (7.2)

For LRP, we assume that anchors are dense enough to cover all ground-truths, i.e.

NFN = 0. Also, since a detection is enforced to follow the label of its anchor dur-

ing training, TP and FP sets are replaced by the thresholded subsets of P and N ,

respectively. This is applied by H(·), and rank(i) = NTP + NFP from Eq. 5.2. Then,

following the definitions in Sec. 6.1, `LRP(i) is:

`LRP(i) =
1

rank(i)

(
NFP(i) + Eloc(i) +

∑
k∈P,k 6=i

Eloc(k)H(xik)

)
, (7.3)

where Eloc(i) = 1−IoU(i)
1−τ and τ is the positive-negative assignment threshold following

the definition of LRP. Note that Eq. 7.3 allows using robust forms of IoU-based losses
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(c)

Gradients of the Positives

(b)(a)

GTp1

Gradients wrt Box Parameters (B) Gradients of the Negatives

p1, p2, p3 : Positive Examples

n1 : A Negative Example
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p1

p2

p3

p1

p2

p3

n1

p1

p2

p3

Figure 7.2: aLRP Loss assigns gradients to each branch based on the outputs of both

branches. Examples on the PR curve are in sorted order wrt scores (ŝ). L refers to

LaLRP. (a) A pi’s (i.e. a positive example) gradient wrt its score considers (i) local-

isation errors of examples with larger ŝ (e.g. high Eloc(p1) increases the gradient of

sp2 to suppress p1), (ii) number of negatives with larger ŝ. (b) Gradients wrt ŝ of the

negatives: The gradient of a pi is uniformly distributed over the negatives with larger

ŝ. Summed contributions from all positives determine the gradient of a negative. (c)

Gradients of the box parameters: While p1 (with highest ŝ) is included in total locali-

sation error on each positive, i.e. Lloc(i) = 1
rank(i)

(Eloc(i) +
∑

k∈P,k 6=i
Eloc(k)H(xik)), p3

is included once with the largest rank(pi).

(e.g. generalized IoU (GIoU) [93]) only by replacing IoU Loss (i.e. 1 − IoU(i)) in

Eloc(i) and normalizing the range to [0, 1] [166].

In order to provide more insight and facilitate gradient derivation, we split Eq. 7.2 into

two as localisation and classification components such that LaLRP = LaLRP
cls +LaLRP

loc ,

where

LaLRP
cls =

1

|P|
∑
i∈P

NFP(i)

rank(i)
, and (7.4)

LaLRP
loc =

1

|P|
∑
i∈P

1

rank(i)

(
Eloc(i) +

∑
k∈P,k 6=i

Eloc(k)H(xik)

)
. (7.5)

7.3.1 Optimisation of the aLRP Loss

LaLRP is differentiable wrt the estimated box parameters, B, since Eloc is differen-

tiable [91, 93] (i.e. the derivatives of LaLRP
cls and rank(·) wrt B are 0). However,
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LaLRP
cls and LaLRP

loc are not differentiable wrt the classification scores, and therefore,

we use error-driven update similar to AP Loss1.

Using the same error distribution, p(j|i), from AP Loss, the primary terms of aLRP

Loss can be defined as LaLRP
ij = `LRP(i)p(j|i). As for the target primary terms, we

use the following desired LRP Error:

`LRP(i)
∗

=
1

rank(i)

(
��

��:0
NFP(i) + Eloc(i) +

��
���

���
���:

0∑
k∈P,k 6=i

Eloc(k)H(xik)

)
=
Eloc(i)
rank(i)

, (7.6)

yielding a target primary term, LaLRP
ij

∗
= `LRP(i)

∗
p(j|i), which includes localisation

error and can be non-zero when ŝi < ŝj , unlike AP Loss. Then, the resulting update
for xij is (Eq. 6.15) 2:

∆xij = −
(
`LRP(i)

∗ − `LRP(i)
)
p(j|i) =

1

rank(i)

NFP(i) +
∑

k∈P,k 6=i

Eloc(k)H(xik)

 H(xij)

NFP(i)
.

(7.7)

Finally, ∂LaLRP/∂ŝi can be obtained with Eq. 6.15. Computation and optimisation

of aLRP Loss has the same quadratic time&space complexity with those of AP Loss.

We provide further details of aLRP Loss in Appendix K.

Interpretation of the Components: A distinctive property of aLRP Loss is that clas-

sification and localisation errors are handled in a unified manner: i.e. with aLRP, both

classification and localisation branches use the entire output of the detector, instead of

working in their separate domains as conventionally done. As shown in Fig. 7.2(a,b),

LaLRP
cls takes into account localisation errors of detections with larger scores (ŝ) and

promotes the detections with larger IoUs to have higher ŝ, or suppresses the detec-

tions with high-ŝ&low-IoU. Similarly, LaLRP
loc inherently weighs each positive based

on its classification rank (see Appendix K for the weights): the contribution of a pos-

itive increases if it has a larger ŝ. To illustrate, in Fig. 7.2(c), while Eloc(p1) (i.e.

p1 is the positive with the largest ŝ) contributes to each Lloc(i); Eloc(p3) (i.e. p3 is

the positive with the largest ŝ) only contributes once with a very low weight due to
1 In this chapter, we use ‘A Generalisation of Error-Driven Optimisation for Ranking-Based Losses” (Ap-

pendix I) to obtain the gradients of aLRP Loss as in our original paper and demonstrate in Appendix J how to
define and obtain the gradients of aLRP Loss using our Identity Update.

2 Note that different from our paper, in this thesis we use ∆xij to denote directly the update not the error-
driven update.
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Figure 7.3: aLRP Loss and its components. The localisation component is self-

balanced.

its rank normalizing Lloc(p3). Hence, the localisation branch effectively focuses on

detections ranked higher wrt ŝ.

7.3.2 A Self-Balancing Extension for the Localisation Task

LRP metric yields localisation error only if a detection is classified correctly (Sec.

5.5.1, Eq. 5.2). Hence, when the classification performance is poor (e.g. espe-

cially at the beginning of training), aLRP Loss is dominated by classification error

(NFP(i)/rank(i) ≈ 1 and `LRP(i) ∈ [0, 1] in Eq. 7.3). As a result, the localisation

head is hardly trained at the beginning (Fig. 7.3). Moreover, Fig. 7.3 also shows

that LaLRP
cls /LaLRP

loc varies significantly throughout training. To alleviate this, we pro-

pose a simple and dynamic self-balancing (SB) strategy using gradient magnitudes:

note that
∑

i∈P

∣∣∂LaLRP/∂ŝi
∣∣ =

∑
i∈N

∣∣∂LaLRP/∂ŝi
∣∣ ≈ LaLRP (Appendix K). Then,

assuming that the gradients wrt scores and boxes are proportional to their contribu-

tions to the aLRP Loss, we multiply ∂LaLRP/∂B by the average LaLRP/LaLRP
loc of the

previous epoch.
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7.4 Experiments

Dataset: We train all our models on COCO trainval35K set [13] (115K images), test

on minival set (5k images) and compare with the state-of-the-art (SOTA) on test-dev

set (20K images).

Performance Measures: COCO-style AP [13], denoted by APC, and when possible

optimal LRP [107] (Sec. 5.5.1) are used for comparison. For more insight into aLRP

Loss, we use Pearson correlation coefficient (ρ) to measure correlation between the

rankings of classification and localisation, averaged over classes.

Implementation Details: For training, we use 4 v100 GPUs. The batch size is 32

for training with 512 × 512 images (aLRPLoss500), whereas it is 16 for 800 × 800

images (aLRPLoss800). Following AP Loss, our models are trained for 100 epochs

using stochastic gradient descent with a momentum factor of 0.9. We use a learning

rate of 0.008 for aLRPLoss500 and 0.004 for aLRPLoss800, each decreased by factor

0.1 at epochs 60 and 80. Similar to previous work [37, 40], standard data augmenta-

tion methods from SSD [24] are used. At test time, we rescale shorter sides of images

to 500 (aLRPLoss500) or 800 (aLRPLoss800) pixels by ensuring that the longer side

does not exceed 1.66× of the shorter side. NMS is applied to 1000 top-scoring detec-

tions using 0.50 as IoU threshold.

7.4.1 Ablation Study

In this section, in order to provide a fair comparison, we build upon the official im-

plementation of our baseline, AP Loss [170]. Keeping all design choices fixed, oth-

erwise stated, we just replace AP & Smooth L1 losses by aLRP Loss to optimise

RetinaNet [18]. We conduct ablation analysis using aLRPLoss500 on ResNet-50

backbone (more ablation experiments are presented in Appendix L).

Effect of using ranking for localisation: Table 7.1 shows that using a ranking loss

for localisation improves APC (from 35.5 to 36.9). For better insight, AP90 is also

included in Table 7.1, which shows ∼5 points increase despite similar AP50 values.

This confirms that aLRP Loss does produce high-quality outputs for both branches,
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Table 7.1: Ablation analysis on COCO minival. For optimal LRP (oLRP), lower is

better.APC denotes COCO-style AP.

Method Rank-Based Lc Rank-Based Lr SB ATSS APC AP50 AP75 AP90 oLRP ρ

AP Loss [37] X 35.5 58.0 37.0 9.0 71.0 0.45

aLRP Loss

X X(w IoU) 36.9 57.7 38.4 13.9 69.9 0.49

X X(w IoU) X 38.7 58.1 40.6 17.4 68.5 0.48

X X(w GIoU) X 38.9 58.5 40.5 17.4 68.4 0.48

X X(w GIoU) X X 40.2 60.3 42.3 18.1 67.3 0.48

and boosts the performance for larger IoUs.

Effect of Self-Balancing (SB): Section 7.3.2 and Fig. 7.3 discussed how LaLRP
cls and

LaLRP
loc behave during training and introduced self-balancing to improve training of the

localisation branch. Table 7.1 shows that SB provides +1.8APC gain, similar AP50

and +8.4 points in AP90 against AP Loss. Comparing SB with constant weighting

in Table 7.2, our SB approach provides slightly better performance than constant

weighting, which requires extensive tuning and end up with different wr constants for

IoU and GIoU. Finally, Table 7.3 presents that initialization of SB (i.e. its value for

the first epoch) has a negligible effect on the performance even with very large values.

We use 50 for initialization.

Using GIoU: Table 7.1 suggests robust IoU-based regression (GIoU) improves per-

formance slightly.

Using ATSS: Finally, we replace the standard IoU-based assignment by ATSS [42],

which uses less anchors and decreases training time notably for aLRP Loss: One

iteration drops from 0.80s to 0.53s with ATSS (34% more efficient with ATSS) – this

time is 0.71s and 0.28s for AP Loss and Focal Loss respectively. With ATSS, we also

observe +1.3APC improvement (Table 7.1). See Appendix L for details.

Hence, we use GIoU [93] as part of aLRP Loss, and employ ATSS [42] when training

RetinaNet.
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Table 7.2: SB does not require tuning and slightly outperforms constant weighting

for both IoU types. COCO-style AP, APC, is reported.

wr 1 2 5 10 15 20 25 SB

w IoU 36.9 37.8 38.5 38.6 38.3 37.1 36.0 38.7

w GIoU 36.0 37.0 37.9 38.7 38.8 38.7 38.8 38.9

Table 7.3: SB is not affected significantly by the initial weight in the first epoch (wr)

even for large values.

wr 1 50 100 500

APC 38.8 38.9 38.7 38.5

7.4.2 More insight on aLRP Loss

Potential of Correlating Classification and Localisation. We analyse two bounds:

(i) A Lower Bound where localisation provides an inverse ranking compared to clas-

sification. (ii) An Upper Bound where localisation provides exactly the same ranking

as classification. Table 7.4 shows that correlating ranking can have a significant effect

(up to 20 APC) on the performance especially for larger IoUs. Therefore, correlating

rankings promises significant improvement (up to ∼ 10APC). Moreover, while ρ is

0.44 and 0.45 for Focal Loss (results not provided in the table) and AP Loss (Table

7.1), respectively, aLRP Loss yields higher correlation (0.48, 0.49).

Analysing Balance Between Positives and Negatives. For this analysis, we com-

pare Cross Entropy Loss (CE), Focal Loss (FL) and aLRP Loss on RetinaNet trained

for 12 epochs and average results over 10 runs. Fig. 7.4 experimentally confirms

Theorem 2 for aLRP Loss (LaLRP
cls ), as it exhibits perfect balance between the gradi-

Table 7.4: Effect of correlating rankings. APC denotes COCO-style AP.

L ρ APC AP50 AP75 AP90

aLRP Loss 0.48 38.7 58.1 40.6 17.4

Lower Bound −1.00 28.6 58.1 23.6 5.6

Upper Bound 1.00 48.1 58.1 51.9 33.9
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Legend Min Rate Max Rate
Cross Entropy  1/4.269 1083.708
Focal Loss  1/5.731 4.790
aLRP Loss  1/1.000 1.000
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Figure 7.4: (left) The rate of the total gradient magnitudes of negatives to positives.

(right) Loss values.

ents throughout training. However, we see large fluctuations in derivatives of CE and

FL (left), which biases training towards positives or negatives alternately across itera-

tions. As expected, imbalance impacts CE more as it quickly drops (right), overfitting

in favor of negatives since it is dominated by the error and gradients of these large

amount of negatives.

7.4.3 Comparison with State of the Art (SOTA)

Different from the ablation analysis, we find it useful to decrease the learning rate

of aLRPLoss500 at epochs 75 and 95. For SOTA comparison, we use the mmdetec-

tion framework [100] for efficiency (we reproduced Table 7.1 using our mmdetection

implementation, yielding similar results - see our repository). Table 7.5 presents the

results, which are discussed below:

Ranking-based Losses. aLRP Loss yields significant gains over other ranking-based

solutions: e.g., compared with AP Loss, aLRP Loss provides +5.4APC for scale 500

and +5.1APC for scale 800. Similarly, for scale 800, aLRP Loss performs 4.7APC

better than DR Loss with ResNeXt-101.

Methods combining branches. Although a direct comparison is not fair since dif-

ferent conditions are used, we observe a significant margin (around 3-5APC in scale

800) compared to other approaches that combine localisation and classification.

Comparison on scale 500. We see that, even with ResNet-101, aLRPLoss500 out-
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performs all other methods with 500 test scale. With ResNext-101, aLRP Loss out-

performs its closest counterpart (HSD) by 2.7APC and also in all sizes (APS-APL).

Comparison on scale 800. For 800 scale, aLRP Loss achieves 45.9APC and 47.8APC

on ResNet-101 and ResNeXt-101 backbones respectively. Also in this scale, aLRP

Loss consistently outperforms its closest counterparts (i.e. FreeAnchor and Center-

Net) by 2.9APC and reaches the highest results wrt all performance measures. With

DCN [171], aLRP Loss reaches 48.9APC, outperforming ATSS by 1.2APC.

7.4.4 Using aLRP Loss with Different Object Detectors

Here, we use aLRP Loss to train FoveaBox [174] as an anchor-free detector, and

Faster R-CNN [19] as a two-stage detector. All models use 500 scale setting, have

a ResNet-50 backbone and follow our mmdetection implementation [100]. Further

implementation details are presented in Appendix L.

Results on FoveaBox: To train FoveaBox, we keep the learning rate same with Reti-

naNet (i.e. 0.008) and only replace the loss function by aLRP Loss. Table 7.6 shows

that aLRP Loss outperforms Focal Loss and AP Loss, each combined by Smooth L1

(SL1 in Table 7.6), by 1.4 and 3.2APC points (and similar oLRP points) respectively.

Note that aLRP Loss also simplifies tuning hyperparameters of Focal Loss, which are

set in FoveaBox to different values from RetinaNet. One training iteration of Focal

Loss, AP Loss and aLRP Loss take 0.34, 0.47 and 0.54 sec respectively.

Results on Faster R-CNN: To train Faster R-CNN, we remove sampling, use aLRP

Loss to train both stages (i.e. RPN and Fast R-CNN) and reweigh aLRP Loss of RPN

by 0.20. Thus, the number of hyperparameters is reduced from nine (Table 1.1) to

three (two δs for step function, and a weight for RPN). We validated the learning

rate of aLRP Loss as 0.012, and train baseline Faster R-CNN by both L1 Loss and

GIoU Loss for fair comparison. aLRP Loss outperforms these baselines by more than

2.5APC and 2oLRP points while simplifying the training pipeline (Table 7.7). One

training iteration of Cross Entropy Loss (with L1) and aLRP Loss take 0.38 and 0.85

sec respectively.
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Table 7.5: Comparison with the SOTA detectors on COCO test-dev. S,×1.66 implies

that the image is rescaled such that its longer side cannot exceed 1.66 × S where S

is the size of the shorter side. R:ResNet, X:ResNeXt, H:HourglassNet, D:DarkNet,

De:DeNet. We use ResNeXt101 64x4d. APC denotes COCO-style AP.

Method Backbone Training Size Test Size APC AP50 AP75 APS APM APL

One-Stage Methods
RefineDet [66]‡ R-101 512× 512 512× 512 36.4 57.5 39.5 16.6 39.9 51.4

EFGRNet [67]‡ R-101 512× 512 512× 512 39.0 58.8 42.3 17.8 43.6 54.5

ExtremeNet [172]∗‡ H-104 511× 511 original 40.2 55.5 43.2 20.4 43.2 53.1

RetinaNet [18] X-101 800,×1.66 800,×1.66 40.8 61.1 44.1 24.1 44.2 51.2

HSD [95] ‡ X-101 512× 512 512× 512 41.9 61.1 46.2 21.8 46.6 57.0

FCOS [160]† X-101 (640, 800),×1.66 800,×1.66 44.7 64.1 48.4 27.6 47.5 55.6

CenterNet [40]∗‡ H-104 511× 511 original 44.9 62.4 48.1 25.6 47.4 57.4

ATSS [42]† X-101-DCN (640, 800),×1.66 800,×1.66 47.7 66.5 51.9 29.7 50.8 59.4

Ranking Losses
AP Loss500 [37]‡ R-101 512× 512 500,×1.66 37.4 58.6 40.5 17.3 40.8 51.9

AP Loss800 [37]‡ R-101 800× 800 800,×1.66 40.8 63.7 43.7 25.4 43.9 50.6

DR Loss [70]† X-101 (640, 800),×1.66 800,×1.66 43.1 62.8 46.4 25.6 46.2 54.0

Combining Branches
LapNet [167] D-53 512× 512 512× 512 37.6 55.5 40.4 17.6 40.5 49.9

Fitness NMS [92] De-101 512,×1.66 768,×1.66 39.5 58.0 42.6 18.9 43.5 54.1

Retina+PISA [33] R-101 800,×1.66 800,×1.66 40.8 60.5 44.2 23.0 44.2 51.4

FreeAnchor [39]† X-101 (640, 800),×1.66 800,×1.66 44.9 64.3 48.5 26.8 48.3 55.9

Ours
aLRP Loss500‡ R-50 512× 512 500,×1.66 41.3 61.5 43.7 21.9 44.2 54.0

aLRP Loss500‡ R-101 512× 512 500,×1.66 42.8 62.9 45.5 22.4 46.2 56.8

aLRP Loss500‡ X-101 512× 512 500,×1.66 44.6 65.0 47.5 24.6 48.1 58.3

aLRP Loss800‡ R-101 800× 800 800,×1.66 45.9 66.4 49.1 28.5 48.9 56.7

aLRP Loss800‡ X-101 800× 800 800,×1.66 47.8 68.4 51.1 30.2 50.8 59.1

aLRP Loss800‡ X-101-DCN 800× 800 800,×1.66 48.9 69.3 52.5 30.8 51.5 62.1

Multi-Scale Test
aLRP Loss800‡ X-101-DCN 800× 800 800,×1.66 50.2 70.3 53.9 32.0 53.1 63.0
†: multiscale training, ‡: SSD-like augmentation, ∗: Soft NMS [173] and flip augmentation at test time

Table 7.6: Comparison on FoveaBox [174]. APC denotes COCO-style AP.

L APC AP50 AP75 AP90 oLRP

Focal Loss+SL1 38.3 57.8 40.7 15.7 68.8

AP Loss+SL1 36.5 58.3 38.2 11.3 69.8

aLRP Loss (Ours) 39.7 58.8 41.5 18.2 67.2
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Table 7.7: Comparison on Faster R-CNN [19]. APC denotes COCO-style AP.

L APC AP50 AP75 AP90 oLRP

Cross Entropy+L1 37.8 58.1 41.0 12.2 69.3

Cross Entropy+GIoU 38.2 58.2 41.3 13.7 69.0

aLRP Loss (Ours) 40.7 60.7 43.3 18.0 66.7

7.5 Conclusion

In this chapter, we introduced aLRP Loss, a ranking-based, balanced loss function

which handles the classification and localisation errors in a unified manner. aLRP

Loss has only one hyperparameter which we did not need to tune, as opposed to

around 7 in SOTA loss functions. We showed that using aLRP improves its baselines

significantly over different detectors by simplifying parameter tuning, and outper-

forms all one-stage detectors.
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CHAPTER 8

RANK & SORT LOSS FOR OBJECT DETECTION AND INSTANCE

SEGMENTATION

In this chapter, we present our RS Loss based on our work,

• Kemal Oksuz, Baris Can Cam, Emre Akbas* and Sinan Kalkan∗, “Rank &

Sort Loss for Object Detection and Instance Segmentation”, under review for

International Conference on Computer Vision (ICCV), 2021.

We note that an extended version of our Identity Update, originally introduced in this

work [165], is discussed in Chapter 6, and hence, this chapter is only reserved to

Rank & Sort Loss. Similar to other chapters, we make minor changes to fit the text

appropriately in the context of this thesis and to provide a consistent notation.

8.1 Introduction

Owing to their multi-task (e.g. classification, box regression, mask prediction) na-

ture, object detection and instance segmentation methods rely on loss functions of the

form:

LV D =
∑
k∈K

∑
t∈T

λktLkt , (8.1)

which combines Lkt , the loss function for task t on stage k (e.g. |K| = 2 for Faster

R-CNN [19] with RPN and R-CNN), weighted by a hyper-parameter λkt . In such

formulations, the number of hyper-parameters can easily exceed 10 [156], with addi-

tional hyper-parameters arising from task-specific imbalance problems [142], e.g. the
∗ Equal contribution for senior authorship.
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Classification Logits

0 1 2 3 4 5 6 7

3.0 2.0 1.0 0.0 -1.0 -2.0 -3.0 -4.0

Binary Labels 1 1 0 0 1 0 1 0

Target Ranking (𝑖) 0, 4, 1, 6 (any order) 2, 3, 5, 7 (any order)

Anchor ID (𝑖)

(a) Ranking positives (+) above negatives (-)

(b) Rank&Sort Loss: Rank (+) above (-)  &  Sort (+) wrt their IoU labels

Classification Logits

0 1 2 3 4 5 6 7

3.0 2.0 1.0 0.0 -1.0 -2.0 -3.0 -4.0

Continuous Labels (IoU) 0.9 0.4 0.0 0.0 0.8 0.0 0.1 0.0

RS Loss Target Ranking (𝑖) 0 4 1 6 2, 3, 5, 7 (any order)

Anchor ID (𝑖)

(+)

(-)

(+)

(-)

Figure 8.1: A ranking-based classification loss vs our RS Loss. (a) Enforcing to rank

positives above negatives provides a useful objective for training, however, it ignores

ordering among positives. (b) Our RS Loss, in addition to ranking positives above

negatives, aims to sort positives wrt. their continuous IoUs (positives: a green tone

based on its label, negatives: orange). We use our Identity Update (Section 6.2), a

reformulation of error-driven update with backpropagation, to tackle these ranking

and sorting operations which are difficult to optimise due to their non-differentiable

nature.

positive-negative imbalance in the classification task, and if a cascaded architecture

is used (e.g. HTC [34] employs 3 R-CNNs with different λkt ). Thus, although such

loss functions have led to unprecedented successes in several benchmarks, they ne-

cessitate tuning, which is time consuming, leads to sub-optimal solutions and makes

fair comparison of methods challenging.

Recently proposed ranking-based loss functions, namely “Average Precision (AP)

Loss” [37] and “average Localisation Recall Precision (aLRP) Loss” [156], offer two

important advantages over the classical score-based functions (e.g. Cross-entropy

Loss and Focal Loss [18]): (1) They directly optimise the performance measure (e.g.

AP), thereby providing consistency between training and evaluation objectives. This

also reduces the number of hyper-parameters as the performance measure (e.g. AP)

does not typically have any hyper-parameters. (2) They are robust to extreme class-

imbalance due to their ranking-based error definition. Although these losses have
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yielded impressive performances, they require longer training and more augmenta-

tion.

Broadly speaking, the ranking-based losses (AP Loss and aLRP Loss) focus on rank-

ing positive examples over negatives, and they do not explicitly model positive-to-

positive interactions. However, prioritizing predictions wrt. their localisation quali-

ties by using an auxiliary (e.g. IoU, centerness) head has been a common approach

that improves performance [160, 42, 43, 90, 130]. Besides, as recently shown by Li

et al. [175] (in Quality Focal Loss - QFL), when the classifier is directly supervised

to regress IoUs of the predictions, one can remove the auxiliary head and further

improve the performance.

In this chapter, we propose Rank & Sort (RS) Loss as a ranking-based loss function

to train visual detection (VD – i.e. object detection and instance segmentation) meth-

ods. RS Loss not only ranks positives above negatives (Fig. 8.1(a)) but also sorts

positives among themselves with respect to their continuous IoU values (Fig. 8.1(b)).

This approach brings in several crucial benefits. Due to the prioritization of positives

during training, detectors trained with RS Loss do not need an auxiliary head, and

due to its ranking-based nature, RS Loss can handle extremely imbalanced data (e.g.

object detection [142]) without any sampling heuristics. Besides, except for the learn-

ing rate, RS Loss does not need any hyper-parameter tuning thanks to our tuning-free

task-balancing coefficients. Owing to this significant simplification of training, we

can apply RS Loss to different methods (i.e. multi-stage, one-stage, anchor-based,

anchor-free) easily (i.e. only by tuning the learning rate) and demonstrate that RS

Loss consistently outperforms baselines.

Our contributions in this chapter can be summarized as follows:

(1) We propose Rank & Sort Loss that defines a ranking objective between positives

and negatives as well as a sorting objective to prioritize positives wrt. their continuous

IoUs. Due to this ranking-based nature, RS Loss can train models in the presence of

highly imbalanced data.

(2) We present the effectiveness of RS Loss on a diverse set of four object detectors

and three instance segmentation methods only by tuning the learning rate and without
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any auxiliary heads or sampling heuristics: E.g. (i) Our RS-R-CNN improves Faster-

CNN by ∼ 3 box AP, (ii) our RS-Mask R-CNN improves Mask R-CNN by ∼ 2 mask

AP and box AP, (iii) our RS-YOLACT improves YOLACT by more than 3 box AP

and ∼ 1.5 mask AP.

8.2 Related Work

Auxiliary heads and continuous labels. Predicting the localisation quality of a de-

tection with an auxiliary centerness [160, 42], IoU [43, 130], mask-IoU [41] or uncer-

tainty (i.e. variance) head [90] and combining these predictions with the classification

scores for NMS are shown to improve detection performance. Lin et al. [175] discov-

ered that using continuous IoUs of predictions to supervise the classifier outperforms

using an auxiliary head. Currently, Lin et al.’s “Quality Focal Loss” [175] is the only

method that is robust to class imbalance [142] and uses continuous labels to train the

classifier. In this work, we investigate the generalizability of this idea on different

networks (e.g. multi-stage networks [19, 20]) and on a different task (i.e. instance

segmentation) by using our ranking-based RS Loss.

Ranking-based losses in VD. Despite their advantages, ranking-based losses are

non-differentiable and difficult to optimise. To address this challenge, black-box

solvers [176] use an interpolated AP surface, though yielding little gain in object

detection. DR Loss [70] achieves ranking between positives and negatives by enforc-

ing a margin with Hinge Loss, which is differentiable. Finally, AP Loss [37] and

aLRP Loss [156] optimise the performance metrics, AP and LRP [107] respectively,

by using the error-driven update of perceptron learning [44] for the non-differentiable

parts. The main difference of RS Loss is that it also considers continuous localisation

qualities as labels.

Objective imbalance in VD. The common strategy in VD is to use λkt (Eq. 8.1),

a scalar multiplier, on each task and tune them by grid search [38, 43]. Recently,

Oksuz et al. [156] employed a self-balancing strategy to balance classification and

box regression heads, both of which compete for the bounded range of aLRP Loss.

Similarly, Chen et al. [63] use the ratio of classification and regression losses to bal-
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ance these tasks. In our design, each loss Lkt for a specific head has its own bounded

range and thus, no competition ensues among heads. Besides, we use Lkt s with sim-

ilar ranges, and show that our RS Loss can simply be combined with a simple task

balancing strategy based on loss values, and hence does not require any tuning except

the learning rate.

8.3 Rank & Sort Loss

In order to supervise the classifier of visual detectors by considering the localisation

qualities of the predictions (e.g. IoU), RS Loss decomposes the problem into two

tasks: (i) Ranking task, which aims to rank each positive higher than all negatives, and

(ii) sorting task, which aims to sort the logits ŝi in descending order wrt. continuous

ground-truth labels yi (e.g. IoUs). We define RS Loss and compute its gradients using

our Identity Update (Section 6.2 – Fig. 6.1).

Definition. Given logits ŝi and their continuous ground-truth labels yi ∈ [0, 1] (e.g.

IoU), we define RS Loss as the average of the differences between the current (`RS(i))

and target (`∗RS(i)) RS errors over positives (i.e. yi > 0):

LRS :=
1

|P|
∑
i∈P

(`RS(i)− `∗RS(i)) , (8.2)

where `RS(i) is a summation of the current ranking error and current sorting error:

`RS(i) :=
NFP(i)

rank(i)︸ ︷︷ ︸
`R(i): Current Ranking Error

+

∑
j∈P

H(xij)(1− yj)

rank+(i)︸ ︷︷ ︸
`S(i): Current Sorting Error

. (8.3)

For i ∈ P , while the “current ranking error” is simply the precision error, the “current

sorting error” penalizes the positives with logits larger than ŝi by the average of their

inverted labels, 1− yj . Note that when i ∈ P is ranked above all j ∈ N , NFP(i) = 0

and target ranking error, `∗R(i), is 0. For target sorting error, we average over the

inverted labels of j ∈ P with larger logits (H(xij)) and labels (yj ≥ yi) than i ∈ P
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corresponding to the desired sorted order,

`∗RS(i) =��
�*0

`∗R(i) +

∑
j∈P

H(xij)[yj ≥ yi](1− yj)∑
j∈P

H(xij)[yj ≥ yi]︸ ︷︷ ︸
`∗S(i):Target Sorting Error

, (8.4)

where [P] is the Iverson Bracket (i.e. 1 if predicate P is True; else 0), and similar to

previous work [37], H(xij) is smoothed in the interval [−δRS, δRS] as xij/2δRS + 0.5.

Computation. We follow the three-step algorithm (Section 6.2, Fig. 6.1) and define

primary terms, Lij , using Eq. 6.18, which allows us to express the errors among

positives as:

Lij =


(`R(i)− `∗R(i)) pR(j|i), for i ∈ P , j ∈ N

(`S(i)− `∗S(i)) pS(j|i), for i ∈ P , j ∈ P ,

0, otherwise,

(8.5)

where ranking (pR(j|i)) and sorting pmfs (pS(j|i)) uniformly distribute ranking and

sorting errors on i respectively over examples causing error (i.e. for ranking, j ∈ N
with ŝj > ŝi; for sorting, j ∈ P with ŝj > ŝi but yj < yi):

pR(j|i) =
H(xij)∑

k∈N
H(xik)

; pS(j|i) =
H(xij)[yj < yi]∑

k∈P
H(xik)[yk < yi]

, (8.6)

Optimisation. To obtain ∂LRS

∂ŝi
, we simply replace ∆xij (Eq. 6.15) by the primary

terms of RS Loss, Lij (Eq. 8.5), following Identity Update (Section 6.2). The result-

ing ∂LRS

∂ŝi
for i ∈ N then becomes (see Appendix M for derivations):

∂LRS

∂ŝi
=

1

|P|
∑
j∈P

`R(j)pR(i|j). (8.7)

Owing to the additional sorting error (Eq. 8.3, 8.4), ∂LRS

∂ŝi
for i ∈ P includes update

signals for both promotion and demotion to sort the positives accordingly:

1

|P|

(
`∗RS(i)− `RS(i)︸ ︷︷ ︸

Update signal to promote i

+
∑
j∈P

(`S(j)− `∗S(j)) pS(i|j)︸ ︷︷ ︸
Update signal to demote i

)
. (8.8)

Note that the directions of the first and second part of Eq. 8.8 are different. To

place i ∈ P in the desired ranking, `∗RS(i) − `RS(i) ≤ 0 promotes i based on the
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error computed on itself, whereas (`S(j)− `∗S(j)) pS(i|j) ≥ 0 demotes i based on the

signal from j ∈ P . We provide more insight for RS Loss and its gradients on an

example in Appendix M.

8.4 Using RS Loss to Train Visual Detectors

In this section, we develop an overall loss function to train visual detectors with RS

Loss, in which only the learning rate needs tuning. To do so, as commonly performed

in the literature [175, 43], we analyse different design choices on ATSS [42], a state-

of-the-art (SOTA) one-stage object detector (i.e. k = 1 in Eq. 8.1) in Section 8.4.2;

and in Section 8.4.3, we extend our design to other architectures and tasks.

8.4.1 Dataset and Implementation Details

Unless explicitly specified, we use (i) standard configuration of each detector and only

replace the loss function, (ii) mmdetection framework [100], (iii) 16 images with a

size of 1333 × 800 in a single batch (4 images/GPU, Tesla V100) during training,

(iv) 1× training schedule (12 epochs), (v) single-scale test with images with a size of

1333×800, (vi) ResNet-50 backbone with FPN [29], (vii) COCO trainval35K (115K

images) and minival (5k images) sets [13] to train and test our models, (iix) report

COCO-style AP, denoted as APC.

8.4.2 Analysis and Tuning-Free Design Choices

ATSS [42] with its classification, box regression and centerness heads is originally

trained by minimizing:

LATSS = Lcls + λboxLbox + λctrLctr, (8.9)

where Lcls is Focal Loss [18]; Lbox is GIoU Loss [93]; Lctr is Cross-entropy Loss

with continuous labels to supervise centerness prediction; and λbox = 2 and λctr = 1.

We first remove the centerness head and replace Lcls by our RS Loss (Section 8.3),

LRS , using IoU(b̂i, bi) between a prediction box (b̂i) and ground truth box (bi) as the
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soft labels:

LRS−ATSS = LRS + λboxLbox, (8.10)

where λbox, the task-level balancing coefficient, is generally set to a constant scalar

by grid search.

Inspired by recent work [156, 63], we investigate two tuning-free heuristics to de-

termine λbox every iteration: (i) value-based: λbox = Lbox/LRS , and (ii) magnitude-

based: λbox =
∣∣∣∂Lbox

∂b̂

∣∣∣/∣∣∂LRS

∂s

∣∣ where |·| is L1 norm, b̂ and s are box regression and

classification head outputs respectively.

Next we delve into Lbox, which is defined as the weighted average of the individual

losses of examples:

Lbox =
∑
i∈P

wi∑
j∈P

wj
LGIoU(b̂i, bi), (8.11)

where LGIoU(b̂i, bi) is the GIoU Loss [93], and wi is the instance-level importance

weight. Unlike no prioritization (i.e. wi = 1 for i ∈ P), recently, a diverse set of

heuristics assigns different importances over i ∈ P: centerness-based importance

[160, 42] aims to focus on the proposals (i.e. point or anchor) closer to the center

of bi, score-based heuristic [175] uses the maximum of confidence scores of a pre-

diction as wi, IoU-based approach [43] increases the losses of the predictions that

are already better localised by wi = IoU(b̂i, bi), and finally ranking-based weight-

ing [156] uses wi = 1
|P|

(∑
k∈P

H(xki)
rank(k)

)
, where H(·) can be smoothed by an additional

hyper-parameter (δloc).

Observations and Our Design Choices: In our experiments on ATSS trained with

RS Loss (Table 8.1), we observed that: (i) value-based task balancing performs sim-

ilar to tuning λbox (∼ 0 AP on average), (ii) instance-level weighting methods also

perform similarly (largest gap is 0.2 AP). Thus, we use value-based task balancing

and score-based instance weighting, which are both hyper-parameter-free and easily

applicable to all networks. With these design choices, Eq. 8.10 has only 1 hyper-

parameter (i.e. δRS in H(·), set to 0.50, to smooth the unit-step function).

Comparison with aLRP Loss: We also provide a comparative analysis of aLRP Loss

and RS Loss in Appendix N. In that analysis, we first show that competing tasks for
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Table 8.1: Comparison of instance- and task-level weighting methods on RS-ATSS.

Instance-level importance weighting methods yield similar performance and value-

based SB achieves similar performance with constant weighting. Thus, we use score-

based weighting and value-based SB with RS Loss (underlined&bold), which are

both tuning-free.

Instance-level
importance
weight (wi)

Task-level balancing coefficient (λbox)
Constant weighting Self-balance (SB)

1 2 3 value magnitude

No prioritization 38.9 39.7 39.7 39.7 39.4

Centerness-based [160] 38.8 39.8 39.6 39.6 39.5

Score-based [175] 39.1 39.8 39.7 39.9 39.7

IoU-based [43] 39.0 39.7 39.8 39.7 39.6

Ranking-based [156] 39.1 39.9 39.6 39.9 39.6

the bounded range of aLRP Loss degrades performance especially when the models

are trained 12 epochs following the common training schedule. However, we still

observe a performance difference when the models are trained longer. This is mainly

because the target of aLRP Loss is hand-crafted, hence does not have an intuitive

interpretation, on the other hand, RS Loss aims to sort the positives as the target. See

Appendix N for further discussion and see Appendix O for the relation of RS Loss

with LRP Error and aLRP Loss.

8.4.3 Training Different Architectures

Fig. 8.2 presents a comparative overview on how we adopt RS Loss to train different

architectures: When we use RS Loss to train the classifier (Fig. 8.2(b)), we remove

auxiliary heads (e.g. IoU head in IoU-Net [130]) and sampling heuristics (e.g. OHEM

in YOLACT [38], random sampling in Faster R-CNN [19]). We adopt score-based

weighting in box regression and mask prediction heads, and prefer Dice Loss, instead

of the common Cross-entropy Loss, to train mask prediction head for instance seg-

mentation due to (i) its bounded range between 0 and 1, and (ii) holistic evaluation of

the predictions, both similar to GIoU Loss. Finally, we set λkt to scalar Lkcls/Lkt (Eq.

8.1) every iteration (Fig. 8.2(c)) with the single exception of RPN and additionally
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(a) Common Training of Stage 𝑘 (𝑘 >1 for multi-stage, e.g. Mask-scoring R-CNN)

Sampling 

Heuristics

ℒ𝑐𝑙𝑠
𝑘

ℒ𝑏𝑜𝑥
𝑘

ℒ𝑚𝑎𝑠𝑘
𝑘

ℒ𝑎𝑢𝑥
𝑘

0 1 0 0 1

0.50-1.00 0.902.00

Cls. 

Head

Box

Head

Mask

Head

Aux

Head

2.00 1.00 0.00 -1.00 -2.00

(b) RS-DET: Using RS Loss to train Stage k of a detector, DET

Sampling 

Heuristics

ℒ𝑎𝑢𝑥
𝑘0.50-1.00 0.902.00

Cls. 

Head

Box

Head

Mask

Head

Aux

Head

2.00 1.00 0.00 -1.00 -2.00

0.00 0.50 0.00 0.00 0.90 ℒ𝑅𝑆
𝑘 ∈ [0,2]

ℒ𝐺𝐼𝑜𝑈
𝑘 ∈ [0,2]

ℒ𝐷𝑖𝑐𝑒
𝑘 ∈ [0,1]

(c) Loss-value based task balancing Prediction

Ground Truth

Sigmoid

ℒ𝑉𝐷 = 

𝑘∈𝒦



𝑡∈𝑇

𝜆𝑡
𝑘 ℒ𝑡

𝑘
𝜆𝑡
𝑘 =

ℒ𝑐𝑙𝑠
𝑘

ℒ𝑡
𝑘

Figure 8.2: (a) A generic visual detection pipeline includes many heads from pos-

sibly multiple stages. An auxiliary (Aux) head, in addition to the standard ones, is

common in recent methods (e.g. centerness head for ATSS [42], IoU head for IoU-

Net [130], and mask IoU head for Mask-scoring R-CNN [41]) to regress localisation

quality and prioritize examples during inference (e.g. by multiplying classification

scores by the predicted localisation quality). Sampling heuristics are also common

to ensure balanced training. Such architectures use many hyper-parameters and are

sensitive for tuning. (b) Training detectors with our RS Loss removes (i) auxiliary

heads by directly supervising the classification (Cls.) head with continuous IoUs (in

red&bold), (ii) sampling heuristics owing to its robustness against class imbalance.

We use losses with similar range with our RS Loss in other branches (i.e. GIoU Loss,

Dice Loss) also by weighting each by using classification scores, obtained applying

sigmoid to logits. (c) Instead of tuning λkt s, we simply balance tasks by considering

loss values. With this design, we train several detectors only by tuning the learning

rate and improve their performance consistently.
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multiply the losses of RPN by 0.20 following aLRP Loss.

8.5 Experiments

To present the contribution of RS Loss in terms of performance and tuning simplicity,

we conduct experiments on seven visual detectors with a diverse set of architectures:

four object detectors (i.e. Faster R-CNN [19], Cascade R-CNN [20], ATSS [42] and

PAA [43] – Section 8.5.1) and three instance segmentation methods (i.e. Mask R-

CNN [35], YOLACT [38] and SOLOv2 [179] – Section 8.5.2).

8.5.1 Experiments on Object Detection

Here, we train multi- and one-stage detectors with our RS Loss, and then compare

our results with SOTA.

8.5.1.1 Multi-stage Object Detectors

To train Faster R-CNN [19] and Cascade R-CNN [20] by our RS Loss (i.e. RS-R-

CNN), we remove sampling from all stages (i.e. RPN and R-CNNs), use all anchors

to train RPN and m top-scoring proposals/image (by default, m = 1000 for Faster

R-CNN andm = 2000 Cascade R-CNN in mmdetection [100]), replace softmax clas-

sifiers by binary sigmoid classifiers and set the initial learning rate to 0.012. Finally,

multi-stage models trained by RS Loss generates detections with larger scores, hence

we set NMS score threshold of such models to 0.40 for inference efficiency.

Comparison with different R-CNN variants: RS Loss reaches 39.6APC on a stan-

dard Faster R-CNN and outperforms (Table 8.2): (i) FPN [29] (Cross Entropy &

Smooth L1 losses) by 3.4APC, (ii) aLRP Loss [156], a SOTA ranking-based base-

line, by 2.2APC, (iii) IoU-Net [130] and KL Loss [90] methods with auxiliary heads

by 1.5APC and 0.8APC respectively and (iv) Dynamic R-CNN, closest counterpart,

by 0.7APC without any effect on inference time (Appendix P). We, then, use the

lightweight Carafe [177] as the upsampling operation in FPN and obtain 40.8APC
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(RS-R-CNN+), still maintaining ∼ 2APC gap from Carafe FPN [177] (38.6APC)

and outperforming all methods in all AP- and oLRP-based [107] performance mea-

sures except oLRPLoc, which implies that our main contribution is in classification

task trained by our RS Loss and there is still room for improvement in the locali-

sation task. RS Loss also improves the stronger baseline Cascade R-CNN [20] by

1APC from 40.3APC to 41.3APC (Appendix P presents detailed results for Cascade

R-CNN).

Robustness to imbalance: Without tuning, RS Loss can train Faster R-CNN with

sampling (i.e. data is balanced) or without sampling (i.e. data is imbalanced) con-

sistently (Table 8.3). RS Loss utilizes more data when the samplers are removed,

resulting in ∼ 1APC gain (38.5 to 39.6APC). Moreover, while we train Faster R-

CNN with different distributions, unlike score-based losses (i.e. Focal Loss [18],

QFL [175]), we do not tune the bias terms in the last layer of the classification head

to prevent destabilization of the training due to large loss value originating from neg-

atives, which is shown to be important for score-based loss functions [63].

Simplification of training: RS Loss has the least number of hyper-parameters (H# =

3, Table 8.2). It does not need a sampler or an aux. head or tuning of λkt s (Eq. 8.1).

Appendix P presents hyper-parameters of methods.

Contribution of the sorting error: To see the contribution of our additional sorting

error, during training, we track Spearman’s ranking correlation coefficient (ρ) be-

tween IoUs and classification scores, as an indicator of the sorting quality, with and

without our additional sorting error (see Eq. 8.2-8.4). As hypothesized, using sorting

error improves sorting quality, ρ, averaged over all/last 100 iterations, from 0.38/0.42

to 0.42/0.47 for RS-R-CNN.

8.5.1.2 One-stage Object Detectors

We train ATSS [42] and PAA [43] including a centerness head and an IoU head re-

spectively in their architectures. We adopt the anchor configuration of Oksuz et al.

[156] for all ranking-based losses (different anchor configurations do not affect per-

formance of standard ATSS [42]) and set learning rate to 0.008. While training PAA,
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Table 8.3: RS Loss is robust to class imbalance. It successfully trains Faster R-CNN

with both relatively balanced (“Random” sampling) and severely imbalanced (“None”

in the table) data. Numbers in parentheses show positive to negative ratio of sampled

examples.

RPN R-CNN APC AP50 AP75

Random (1:1) Random (1:3) 38.5 58.5 41.5

None Random (1:3) 39.3 59.6 42.3

None None 39.6 59.5 43.0

we keep the scoring function, splitting positives and negatives, for a fair comparison

among different loss functions.

Comparison with AP and aLRP Losses, ranking-based baselines: We simply re-

placed Focal Loss by AP Loss to train networks, and as for aLRP Loss, similar to

our RS Loss, we tuned its learning rate as 0.005 due to its tuning simplicity. Both for

ATSS and PAA, RS Loss provides significant gains over ranking-based alternatives,

which were trained for 100 epochs using SSD-like augmentation [24] in previous

work [37, 156]: 1.8/2.2APC gain for ATSS and 3.7/3.3APC for PAA for AP/aLRP

Loss (Table 8.4).

Comparison with Focal Loss, default loss function: RS Loss provides around ∼ 1

AP gain when both networks are equally trained without an aux. head (Table 8.4) and

0.6APC gain compared to the default networks with aux. heads.

Comparison with QFL, score-based loss function using continuous IoUs as la-

bels: To apply QFL [175] to PAA, we remove the auxiliary IoU head (as we did with

ATSS), test two possible options ((i) default PAA setting with λbox = 1.3 and IoU-

based weighting, (ii) default QFL setting: λbox = 2.0 and score-based weighting –

Section 8.4.2) and report the best result for QFL. While the results of QFL and RS

Loss are similar for ATSS, there is 0.8APC gap in favor of our RS Loss, which can

be due to the different positive-negative labelling method in PAA (Table 8.4).
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Table 8.5: Comparison with SOTA for object detection on COCO test-dev. All meth-

ods use ResNet-101 and DCN. The result of the similarly trained Faster R-CNN is

acquired from Zhang et al. [36]. +: upsampling of FPN is Carafe [177]

Method APC AP50 AP75 APS APM APL

O
ne

-s
ta

ge ATSS [42] 46.3 64.7 50.4 27.7 49.8 58.4

GFL [175] 47.3 66.3 51.4 28.0 51.1 59.2

PAA [43] 47.4 65.7 51.6 27.9 51.3 60.6

RepPointsv2 [180] 48.1 67.5 51.8 28.7 50.9 60.8

M
ul

ti-
st

ag
e Faster R-CNN [36] 44.8 65.5 48.8 26.2 47.6 58.1

Trident Net [81] 46.8 67.6 51.5 28.0 51.2 60.5

Dynamic R-CNN [36] 46.9 65.9 51.3 28.1 49.6 60.0

D2Det [181] 47.4 65.9 51.7 27.2 50.4 61.3

O
ur

s RS-R-CNN 47.8 68.0 51.8 28.5 51.1 61.6

RS-R-CNN+ 48.2 68.6 52.4 29.0 51.3 61.7

RS-Mask R-CNN+ 49.0 69.2 53.4 29.9 52.4 62.8

8.5.1.3 Comparison with SOTA

Here, we use our RS-R-CNN since it yields the largest improvement over its baseline.

We train RS-R-CNN for 36 epochs using multiscale training by randomly resizing the

shorter size within [480, 960] on ResNet-101 with DCNv2 [171], and report the re-

sults on COCO test-dev in Table 8.5: Our RS-R-CNN reaches 47.8APC at 14.1 fps

and outperforms similarly trained Faster R-CNN and Dynamic R-CNN by ∼ 3APC

and ∼ 1APC respectively. Although we do not increase the number of parameters

for Faster R-CNN, RS R-CNN also outperforms all multi-stage detectors including

TridentNet [81], which has more parameters and inference time. Our RS-R-CNN+

(Section 8.5.1.1) reaches 48.2APC at 13.6 fps, and RS-Mask R-CNN+ (see Section

8.5.2) reaches 49.0APC at 13.5 fps, outperforming all one- and multi-stage counter-

parts.

8.5.2 Experiments on Instance Segmentation

Similar to Section 8.5.1, we train multi- and one-stage methods with RS Loss and

compare our results with SOTA.
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8.5.2.1 Multi-stage Instance Segmentation Methods

Here, we train the common baseline Mask R-CNN [35] by keeping all design choices

of Faster R-CNN the same and, observe ∼ 2 AP gain for both segmentation and

detection performance (Table 8.6) over Mask R-CNN. Also, as hypothesized, RS-

Mask R-CNN outperforms Mask Scoring R-CNN [41], with an additional mask IoU

head, by 0.4 and 1.8 mask and box APC; and by 0.9 and 1.5 mask and box oLRP

respectively. Compared to Mask R-CNN, one training iteration of RS-Mask R-CNN

takes around 1.5× longer on average while RS Loss has no effect on inference time.

8.5.2.2 One-stage Instance Segmentation Methods

Here, we train two different approaches with our RS Loss: (i) YOLACT [38], a real-

time instance segmentation method, involving sampling heuristics (e.g. OHEM [27]),

auxiliary head and carefully-tuned loss weight, and demonstrate RS Loss can discard

all by improving its performance (ii) SOLOv2 [179] as an anchor-free SOTA method.

YOLACT: Following YOLACT [38], we train (also test) RS-YOLACT by images

with size 550 × 550 for 55 epochs. Instead of searching for epochs to decay learn-

ing rate, carefully tuned for YOLACT as 20, 42, 49 and 52, we simply adopt co-

sine annealing with an initial learning rate of 0.006. Then, we remove (i) OHEM,

(ii) semantic segmentation head, (iii) carefully tuned task weights (i.e. λbox = 1.5,

λmask = 6.125) and (iv) size-based normalization (i.e. normalization of mask head

loss of each instance by the ground-truth area). Removing each heuristic ensues a

slight to significant performance drop (at least requires retuning of λt – Table 8.7).

After these simplifications, our RS-YOLACT improves baseline by 1.5 mask APC

and 3.3 box APC.

SOLOv2: Following Wang et al. [179], we train anchor-free SOLOv2 with RS Loss

for 36 epochs using multiscale training on its two different settings: (i) SOLOv2-light

is the real-time setting with ResNet-34 and images with size 448 × 448 at inference.

We use 32 images/batch and learning rate 0.012 for training. (ii) SOLOv2 is the

SOTA setting with ResNet-101 and images with size 1333 × 800 at inference. We

use 16 images/batch and learning rate 0.006 for training. Since SOLOv2 does not
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Table 8.8: Comparison on anchor-free SOLOv2.

Method Backbone APC AP50 AP75 oLRP ↓ H# ↓
SOLOv2-light ResNet-34 32.0 50.7 33.7 73.5 3

RS-SOLOv2-light ResNet-34 32.6 51.7 34.2 72.7 1

SOLOv2 ResNet-101 39.1 59.8 41.9 67.3 3

RS-SOLOv2 ResNet-101 39.7 60.6 42.2 66.9 1

have a box regression head, we use Dice coefficient as the soft labels of RS Loss

(see Appendix P for an analysis of using different localisation qualities as labels for

instance segmentation). Again, RS Loss performs better than the baseline (i.e. Focal

Loss and Dice Loss) only by tuning the learning rate (Table 8.8).

8.5.2.3 Comparison with SOTA

We use our RS-Mask R-CNN (i.e. standard Mask R-CNN with RS Loss) to compare

with SOTA methods. In order to fit in 16GB memory of our V100 GPUs and keep

all settings unchanged, we limit the number of maximum proposals in the mask head

by 200, which can simply be omitted for GPUs with larger memory. Following our

counterparts [179, 182], we first train RS-Mask R-CNN for 36 epochs with multiscale

training between [640, 800] using ResNet-101 and reach 40.6 mask APC at 14.8 fps

(Table 8.9), improving Mask R-CNN by 2.3 mask APC and outperforming all SOTA

methods by a notable margin (∼ 1APC). Then, we train RS-Mask R-CNN+ (i.e.

standard Mask R-CNN except upsampling of FPN is lightweight Carafe [177]) also

by extending the multiscale range to [480, 960] and reach 42.0 mask APC at 14.3 fps,

which even outperforms all models with DCN. With DCN [171] on ResNet-101, our

RS-Mask R-CNN+ reaches 43.9 mask APC at 11.9 fps.

8.6 Conclusion

In this paper, we proposed RS Loss as a ranking-based loss function to train object

detectors and instance segmentation methods. Unlike existing ranking-based losses,

which aim to rank positives above negatives, our RS Loss also sorts positives wrt.
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Table 8.9: Comparison with SOTA for instance segmentation on COCO test-dev. All

methods use ResNet-101. The result of the similarly trained Mask R-CNN is acquired

from Chen et al. [183].

Method APC AP50 AP75 APS APM APL

w
/o

D
C

N

Polar Mask [184] 32.1 53.7 33.1 14.7 33.8 45.3

Mask R-CNN [183] 38.3 61.2 40.8 18.2 40.6 54.1

SOLOv2 [179] 39.7 60.7 42.9 17.3 42.9 57.4

Center Mask [182] 39.8 – – 21.7 42.5 52.0

RS-Mask R-CNN (Ours) 40.6 62.8 43.9 22.8 43.6 52.8

RS-Mask R-CNN+ (Ours) 42.0 64.8 45.6 24.2 45.1 54.6

w
D

C
N Mask-scoring R-CNN [41] 39.6 60.7 43.1 18.8 41.5 56.2

BlendMask [185] 41.3 63.1 44.6 22.7 44.1 54.5

SOLOv2 [179] 41.7 63.2 45.1 18.0 45.0 61.6

RS-Mask R-CNN+ (Ours) 43.9 67.1 47.6 25.6 47.0 57.8

their localisation qualities, which is consistent with NMS and the performance mea-

sure, AP. With RS Loss, we employed a simple, loss-value-based, tuning-free heuris-

tic to balance all heads in the visual detectors. As a result, we showed on seven

diverse visual detectors that RS Loss both consistently improves performance and

significantly simplifies the training pipeline.
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CHAPTER 9

CONCLUSION

This chapter concludes the thesis with a summary, a discussion and an outlook with

the limitations and future work.

9.1 Summary

In this thesis, we identified the imbalance problems in object detection and proposed

solutions using ranking-based loss functions based on performance measures to ad-

dress these imbalance problems. We had to alleviate two major challenges to be able

to employ such loss functions to train deep learning-based visual detection architec-

tures:

• The first challenge was related to the choice of the performance measure. Hav-

ing identified the limitations of Average Precision, we proposed a novel perfor-

mance metric, LRP Error, to evaluate the performance of visual detections.

• The second challenge that we encountered was the non-differentiable nature

of such ranking-based performance measures, e.g. AP and our LRP Error. To

overcome this, we simplified and generalized the incorporation error-driven op-

timisation into backpropagation and coined our approach as Identity Update.

Then, we defined average LRP (aLRP) Loss and Rank & Sort (RS) Loss based on

our LRP Error and optimized them using our Identity Update. We showed in our ex-

periments that training visual detectors with our loss functions consistently simplifies

training and improves performance.
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With these, the thesis has made contributions to the visual detection literature with a

taxonomy and a review on imbalance problems as well as novel methods for address-

ing them.

9.2 Discussion

As the first aim of this thesis, we provided a comprehensive review of the imbalance

problems in object detection in which we identified four main imbalance problems,

which are further divided into 8 sub-problems (Table 1.2, Fig. 3.1). Despite the fact

that the term “imbalance” has been mentioned nearly in every visual detection paper,

it was being used in various contexts by referring to different imbalance problems.

For example, as a pioneer method, Fast R-CNN [22] uses it in the context of objective

imbalance; Focal Loss implies foreground-background imbalance and SNIPER [31]

refers to scale imbalance. With our review, for the first time, we clearly identified in

what levels imbalance exists and can exist (i.e. potential imbalance problems) in deep

object detectors, and hence, filled a notable gap in the literature. As an indicator, our

repository of the papers addressing imbalance problems in object detection was listed

among the “trending research list of papers-with-code” [186] short after we released

it in August 2018 and reached almost 900 stars as of April 2020.

In order to reach our second aim, we first proposed LRP Error as a novel performance

metric. To the best of our knowledge, our LRP Error is the first performance metric to

challenge Average Precision to evaluate the performance of deep-learning era visual

detectors. To do so, we identified important features that performance measures to

evaluate visual detectors are expected to satisfy. Interestingly, despite its widespread

usage, Average Precision fails to satisfy neither of these important features, which,

in fact, indicate basic requirements such as considering all performance aspects pre-

cisely or interpretability. On the other hand, despite certain advantages of our LRP

Error; considering that all the previous papers had reported their results using Average

Precision and existing competitions [13, 48, 99, 148] have been relying on Average

Precision, it has been difficult to shift the community from Average Precision to our

LRP Error, which would make it more difficult to compare their results with papers

before LRP Error. After our LRP Error, Average Precision was challenged at least two
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times more [149, 153], however, it is still the most common performance measure to

evaluate visual detectors.

Another challenge to reach our second aim was the non-differentiable nature of per-

formance measures, hence using them with backpropogation requires a different method

to obtain update signals. This challenge ensues due to the unit-step function in the

computation of such-ranking based loss functions, which has either zero or infinite

gradients. Concurrent to this thesis, several works have been published specifically to

optimise Average Precision Loss. Brown et al. [187] replaced the unit step function

by a sigmoid, Rolinek et al. [169] used numerical differentiation and Chen et al. [37]

showed that error-driven update from perceptron learning also provide the required

update signal. Different from these works, we used more complicated loss functions,

both of which are based on our LRP Error [107]. As a result, based on the optimi-

sation of AP Loss by Chen et al. [37], we came up with a more general and simple

optimisation method as Identity Update. We conceive that by using Identity Update,

the update signal of different ranking-based loss functions can easily be obtained.

Finally, we proposed two loss functions with three main benefits compared to con-

ventional loss formulation that combines all individual losses by a scaler:

• Our loss functions are “simple-to-tune” with one hyper-parameter. Having ex-

amined the literature, the methods extensively resort to hyperparameters mainly

in order to address the imbalance problems. For example, Dynamic R-CNN

[36] to train a Faster R-CNN [19] has 10 hyper-parameters (we use 3 hyper-

parameters to train Faster R-CNN), or ATSS network [42] has 5 hyperparame-

ters (we have 1 hyper-parameter in this case). We also outperform both of these

baselines with our RS Loss.

• Our loss functions consider “correlation”. Due to its improving effect, the re-

cent methods [160, 42, 90, 130] also tend to combine the outputs of the clas-

sification and localisation tasks. Since IoU-Net [130] was published in ECCV

2018, the dominant choice to do so had been to include an additional auxiliary

head (e.g. for IoU, centerness) during training, which is supervised to predict

the localisation quality. Concurrent to this thesis, Li et al. [175] showed that re-

moving this auxiliary head and training directly the localisation head to regress
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the localisation quality improves the performance. With our RS Loss, we also

achieve prioritisation among positive examples, but differently we enforce an

additional target to sort positives with respect to their localisation qualities. As

a result, different from Li et al. [175], the idea of RS Loss is in parallel with

the performance evaluation of visual detections.

• Our loss functions can train “a diverse set” of object detection and instance

segmentation methods. We believe that this is yet another notable outcome of

this thesis since the common methods were relying on the common choice of

the pipeline (i.e. one-stage or multi-stage) which they belong to. In particular,

while two stage methods [23, 19, 36, 181] were using sampling 1 followed by

cross-entropy loss; one-stage methods [18, 160, 42] were resorting to focal loss

without any sampling. In this paper, we showed that this discrepancy can be

removed, and instead we trained all methods following the same methodology

(i.e. without any sampling by using our loss functions, see Fig. 8.2), and thus,

not only simplified the training but also improved the performance of multi-

stage object detection and instance segmentation methods by discarding the

sampling from their pipelines.

9.3 Limitations and Future Work

This section presents the limitations of our work and provide further possible research

directions based on this thesis.

To begin with, we limited the scope of our review of imbalance problems to object

detection as a representative task among visual detection tasks (e.g. instance segmen-

tation, keypoint detection). However, different visual detection tasks can have their

own imbalance problems as well. For example, Keypoint R-CNN, an extension of

Mask R-CNN [35] for keypoint detection, includes a keypoint prediction head in ad-

dition to the classification and box regression heads of conventional Faster R-CNN

[19]. This additional head is supervised by a cross entropy loss to infer the single pixel

where the corresponding keypoint lies in the predicted mask with a size of 56 × 56.

1 refers to hard-sampling in this context (Chapter 3)
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Obviously, cast as a classification problem with more than 3000 classes, keypoint de-

tection faces this additional imbalance problem during training. However, we have

not investigated the effects of this problem and limited our scope to object detection.

Unlike our review, we kept the scope of our LRP Error more general and accordingly

presented the usage of our LRP Error on four different visual detection tasks, i.e. ob-

ject detection, keypoint detection, instance segmentation and panoptic segmentation.

Besides, we included a section to discuss its usage for other detection tasks such as

3D object detection, but we have not provided any use-case for those tasks. Further-

more, while LRP can provide insight on each performance aspect of visual detection

(i.e. false positive rate, false negative rate and localisation error) with its components

corresponding to each of these aspects, LRP Error is not an in-depth analysis tool.

Our Identity Update is a general and simple framework for optimising ranking-based

loss functions. With this, besides AP Loss, we optimised our more complicated loss

functions, aLRP Loss and Rank & Sort Loss, and presented that the gradients obtained

via Identity Update is able to train models with balanced and imbalanced data. On

the other hand, first, since the scope of this thesis is limited to visual detection, we

have not considered the application of different ranking-based loss functions over

other machine learning problems such as retrieval tasks, for which ranking is a major

concern for performance. Secondly, Identity Update provides provable balance in

terms of “gradient magnitudes”, and in practice, we showed that this is important,

otherwise for example, we observed the training diverges for aLRP Loss (Appendix

L). While we showed it for our loss functions, whether the gradient magnitudes (or a

different measure) is the central cause of imbalance needs further exploration. Finally,

we use identity update to obtain the update rule of a single non-differentiable step

in the sequence of gradients following chain rule. Its usage from a more general

perspective, e.g. in the extreme case to replace all gradients in the sequence to obtain

a derivative-free optimisation method, remains as an open issue.

We successfully trained a diverse set of seven visual detectors including object de-

tection and instance segmentation models using our RS Loss. We also showed that

the task-balancing coefficients can be replaced by the ratio between the RS Loss and

the corresponding task loss when all losses have similar range. We believe that these
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ideas can benefit from further research: To begin with, while these tuning-free coef-

ficients yield SOTA performance with our simple heuristic, we have not thoroughly

analysed for each method we train whether the performance can be improved more

by employing more complex methods such as gradnorm [188] or uncertainty-based

task weighting [189]. Furthermore, the application of RS Loss to other visual detec-

tion tasks (e.g. keypoint detection, 3D object detection) needs exploration. One can

analyse whether prioritising positives are still important for such methods and also

our tuning-free coefficients can still ensure balance across different tasks. Finally,

one limitation of our ranking-based loss functions is average iteration time of our loss

functions is 1.5× longer on average. This is because unlike the score-based loss func-

tions with linear time and space complexity, those for our loss functions are quadratic.

While we use the thresholding tricks following Chen et al. for efficiency, a more sys-

tematic method for improving time and space complexity needs investigation.

As a result, we can say that direct optimisation of performance measures bears chal-

lenges; however, once addressed, compared with their score-based counterparts, the

loss functions based on discriminative performance measures provide a natural bal-

ance during training, significantly simplify training and yield SOTA performance for

visual detectors. On the other hand, while we make the first structured attempt to

optimise such loss functions for visual detection, there still remain aforementioned

major challenges to be addressed in order to be benefit from such loss functions from

a more general perspective.
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APPENDIX A

IMBALANCE PROBLEMS IN OTHER DOMAINS

This appendix covers imbalance problems in other related domains in order to moti-

vate the adaptation of methods from related domains to the object detection problem.

We identify two problems that are closely related to object detection: image classifi-

cation and metric learning, discussed in individual sections. In addition, the methods

pertaining to the multi-task learning are discussed in the last section.

A.1 Image Classification

Image classification is the problem of assigning a category label for an image. This

problem is closely related to the object detection problem since it is one of two tasks

in object detection. For image classification problem, class imbalance has been ex-

tensively studied from very different perspectives (compared to other imbalance prob-

lems), and in this section, we will focus only on class imbalance.

A common approach is Resampling the dataset [190, 191, 192, 193, 144], includ-

ing oversampling and undersampling to balance the dataset. While oversampling

adds more samples from the under-represented classes, undersampling balances over

the classes by ignoring some of the data from the over-represented classes. When

employed naively, oversampling may suffer from overfitting because duplication of

samples from the under-represented classes can introduce bias. Therefore, despite it

means ignoring a portion of the training data, undersampling was preferable for non-

deep-learning approaches [191]. On the other hand, Buda et al. [193] showed that

deep neural networks do not suffer from overfitting under oversampling and in fact,

better performance can be achieved compared to undersampling.
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Over the years, methods more complicated than just duplicating examples have been

developed. For example, Chawla et al. [190] proposed Smote as a new way of over-

sampling by producing new samples as an interpolation of neighbouring samples.

Adasyn [192], an extension of Smote to generate harder examples, aims to synthesize

samples from the underrepresented classes. Li et al. [144] sample a mini-batch as

uniform as possible from all classes also by restricting the same example and class to

appear in the same order, which implies promoting the minority classes.

Another approach addressing class imbalance in image classification is transfer learn-

ing [194, 195]. For example, Wang et al. [194] design a model (i.e. meta-learner)

to learn how a model evolves when the size of the training set increases. The meta-

learner model is trained gradually by increasing the provided number of examples

from the classes with a large number of examples. The resulting meta-model is able

to transform another model trained with less examples to a model trained with more

examples, which makes it useful to be exploited by an underrepresented class. An-

other study [195] adopted a different strategy during transfer learning: Firstly, the

network is trained with the entire imbalanced dataset, and then the resulting network

is fine-tuned by using a balanced subset of the dataset.

Weighting the loss function [196, 197] is yet another way of balancing the classes

(we called it soft sampling in Chapter 3). Among these approaches, Huang et al. [196]

use the inverse class frequency (i.e. 1/|Ci|) to give more weight to under-represented

classes. This is extended by class-balanced loss [197] to adopt inverse class frequency

by employing a hyperparameter β as wi = (1 − β)/(1 − β|Ci|). When β = 0, the

weight degenerates to 1; and β → 1 makes the weight approximate 1/|Ci|, the inverse

class frequency.

Similar to object detection, giving more importance to “useful” examples is also com-

mon [198, 199, 200, 201]. As done in object detection, hard examples have been uti-

lized, e.g. by Dong et al. [200] who identify hard (positive and negative) samples in

the batch level. The proposed method uses the hardness in two levels: (i) Class-level

hard samples are identified based on the predicted confidence for the ground-truth

class. (ii) Instance-level hard examples are the ones with larger L2 distance to a rep-

resentative example in the feature space. An interesting approach that has not been
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utilized in object detection yet is to focus training on examples on which the classifier

is uncertain (based on its prediction history) [201]. Another approach is to generate

hard examples by randomly cropping parts of an image as in Hide and Seek [199], or

adopting a curricular learning approach by first training the classifier on easy exam-

ples and then on hard examples [198].

Another related set of methods addresses image classification problem from the data

redundancy perspective [202, 203, 204, 205, 206]. Birodkar et al. [206] showed that

around 10% of the data in ImageNet [49] and CIFAR-10 datasets is redundant during

training. This can be exploited not only for balancing the data but also to obtain faster

convergence by ignoring useless data. The methods differ from each other on how

they mine for the redundant examples. Regardless of whether imbalance problem is

targeted or not, a subset of these methods uses the active learning paradigm, where

an oracle is used to find out the best set of training examples. The core set approach

[204] uses the relative distances of the examples in the feature space to determine

redundant samples whereas Vodrahalli et al. [205] determine redundancies by looking

at the magnitude of the gradients.

Another mechanism to enrich a dataset is to use weak supervision for incorporating

unlabelled examples. An example study is by Mahajan et al. [207], who augment the

dataset by systematically including Instagram images with the hashtags as the labels,

which are rather noisy. In another example, Liu et al. [208] selectively add unlabeled

data to the training samples after labeling these examples using the classifier.

Generative models (e.g. GANs) can also be used for extending the dataset to address

imbalance. Many studies [209, 210, 211] have successfuly used GANs to generate

examples for under-represented classes for various image classification problems.

Special cases of image classification (e.g. face recognition) are also affected by im-

balance [212, 213, 214]. The general approaches are similar and therefore, due to the

space constraint, we omit imbalance in specialized classification problems.

Comparative Summary. Our analysis reveals that object detection community can

benefit from the imbalance studies in image classification in many different aspects.

The discussed methods for image classification are (by definition) the present solu-
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tions for the foreground-foreground class imbalance problem (see Section 4.2); how-

ever, they can possibly be extended to the foreground-background class imbalance

problem. Foreground-background class imbalance is generally handled by under-

sampling for the object detection problem, and other advanced resampling or transfer

learning methods are not adopted yet for object detection from a class imbalance

perspective. While there are loss functions (discussed in Section 4.1.2) that exploit

a weighting scheme [18, 68], Cui et al. [197] showed that class-balanced loss is

complementary to the focal loss [18] in that focal loss aims to focus on hard exam-

ples while class-balanced loss implies balancing over all classes. However, since the

number of background examples is not defined, the current definition does not fit into

the object detection context. Similarly, the adoption of weakly supervised methods to

balance under-represented classes or data redundancy by also decreasing the samples

from an over-represented class can be used to alleviate the class imbalance problem.

Finally, there are only a few generative approaches in object detection, much less than

those proposed for addressing imbalance in image classification.

A.2 Metric Learning

Metric learning methods aim to find an embedding of the inputs, where the dis-

tance between the similar examples is smaller than the distance between dissimilar

examples. In order to model such similarities, the methods generally employ pairs

[215, 216] or triplets [217, 218, 219] during training. In the pair case, the loss func-

tion uses the information about whether both of the samples are from the same or

different classes. In contrast, training using triplets require an anchor example, a pos-

itive example from the same class with the anchor and a negative example from a dif-

ferent class from the anchor. The triplet-wise training scheme introduces imbalance

over positive and negative examples in favor of the latter one, and the methods also

look for the hard examples as in object detection in both the pair-wise and triplet-wise

training schemes. Accordingly, to present the imbalance and useful example mining

requirement, note that there are approximately O(n2) pairs and O(n3) triplets assum-

ing that the dataset size is n. This increase in the dataset size makes it impossible to

mine for hard examples by processing the entire dataset to search for the most useful
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(i.e. hard) examples. For this reason, similar to object detection, a decision is to be

made on which samples to be used during training.

The metric learning methods use sampling, generative methods or novel loss func-

tions to alleviate the problem. Note that this is very similar to our categorization

of foreground-background class imbalance methods in Section 4.1, which also drove

us to examine metric learning in detail. Owing to its own training, and resulting

loss function configuration, here we only examine sampling strategies and generative

methods.

Sampling Methods aim to find a useful set of training examples from a large training

dataset. The usefulness criterion is considered to be highly relevant to the hardness of

an example. Unlike the methods in object detection, some of the methods avoid using

the hardest possible set of examples during traning. One example proposed by Schroff

et al. [217] use a rule based on Euclidean distance to define “semi-hard” triplets

since selecting the hardest triplets can end up in local minima during the early stages

of the training. This way, they decrease the effect of confusing triplets and avoid

repeating the same hardest examples. Another approach that avoids considering the

hardest possible set of examples is Hard-Aware Deeply Cascaded Embedding [220],

which proposes training a cascaded model such that the higher layers are trained with

harder examples while the first layers are trained with the entire dataset. Similarly,

Smart Mining [221] also mines semi-hard examples exploiting the distance between

nearest neighbour of anchor and the corresponding anchor and one novelty is that they

increase the hardness of the negative examples in the latter epochs adaptively. Note

that neither semi-hardness nor adaptive setting of the hardness level is considered by

object detectors.

As a different approach, Cui et al. [222] consider to exploit humans to label false

positives during training, which are identified as hard examples and be added to the

mini-batch for the next iteration. Song et al. [223] mine hard negatives not only

for the anchor but also for all of the positives. Note that no object detection method

considers the relation between all positives and the negative example while assigning

a hardness value to a negative example. One promising idea shown by Huang et

al. [224] is that larger intra-class distances can confuse the hard example mining
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process while only inter-class distance is considered during mining. For this reason,

a position-dependent deep metric unit is proposed to take into account the intra-class

variations.

Similar to the generative methods for object detection (Section 4.1.4), Generative

Methods have been used for generating examples or features for metric learning as

well. Deep Adversarial Metric Learning [225] simultaneously learns and embedding

and a generator. Here, the generator outputs a synthetic hard negative example given

the original triplet. Similar to Tripathi et al. [72], Zhao et al. [226] also use a GAN

[143] in order to generate not only hard negatives but also hard positives. The idea to

consider inter-class similarity have proven well as in the work by Huang et al. [224].

Finally, a different approach from the previous generative models, Hardness Aware

Metric Learning [227], aims to learn an autoencoder in the feature space. The idea is

as follows: The authors first manipulate the features after the backbone such that the

hardness of the example can be controlled by linearly interpolating the embedding

towards the anchor by employing a coefficient relying on the loss values at the last

epoch. Since it is not certain that the interpolated embedding preserves the original

label, a label preserving mapping back to the feature space is employed using the

autoencoder. Also, similar to Harwood et al. [221], the hardness of the examples in

the latter epochs is increased.

Comparative Summary. Looking at the studies presented above, we observe that the

metric learning methods are able to learn an embedding of the data that preserves

the desired similarity between data samples. Object detection literature have used

different measures and metrics that have been designed by humans. However, as

shown by the metric learning community, a metric that is directly learned from the

data itself can yield better results and have interesting properties. Moreover, the self-

paced learning, where the hardness levels of the examples is increased adaptively, is

definitely an important concept for addressing imbalance in object detection. Another

idea that can be adopted by the object detectors is to label the examples by humans

in an online manner (similar to the work by Yao [228]) during training and to use the

semi-hardness concept.

234



A.3 Multi-Task Learning

Multi-task learning involves learning multiple tasks (with potentially conflicting ob-

jectives) simultaneously. A common approach is to weigh the objectives of the tasks

to balance them.

Many methods have been proposed for assigning the weights in a more systematic

manner. For example, Li et al. [229] extended the self-paced learning paradigm to

multi-task learning based on a novel regularizer. The hyperparameters in the pro-

posed regularizer control the hardness of not only the instances but also the tasks, and

accordingly, the hardness level is increased during training. In another work moti-

vated by the self-paced learning approach, Guo et al. [139] use more diverse set of

tasks, including object detection. Their method weighs the losses dynamically based

on the exponential moving average of a predefined key performance indicator (e.g.

accuracy, average precision) for each task. Similar to image classification, one can

also use the uncertainty of the estimations [189] or their loss values [230] to assign

weights to the tasks.

In addition to the importance or hardness of tasks, Zhao Chen and Rabinovich [188]

identified the importance of the pace at which the tasks are learned. They suggested

that the tasks are required to be trained in a similar pace. For this end, they proposed

balancing the training pace of different tasks by adjusting their weights dynamically

based on a normalization algorithm motivated by batch normalization [122].

Comparative Summary. Being a multi-task problem, object detection can benefit sig-

nificantly from the multi-task learning approaches. However, this aspect of object

detectors has not received attention from the community.
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APPENDIX B

DETAILS OF THE BOUNDING BOX GENERATOR

This appendix the derivation of the Eq. 4.1 and Eq. 4.2, and explain the

findBRFeasibleSpace(B, T,TL(B̄)) function in Algorithm 1.

B.1 Details of Finding the Feasible Space for Top-Left Point

This section provides details for findTLFeasibleSpace(B, T ) function. In particular,

we derive Eq. 4.1 and Eq. 4.2, and present all equations to determine the top-left

space.

In order to derive Eq. 4.1 depicting xImax, we bound the x coordinate first. It is
obvious that xImin = x1 due to the boundary of Region I. For xImax, we know that
ȳ1 = y1 again thanks to the region boundary. Therefore, since we have only one
unknown, xImax, we use the definition of the IoU to determine its value in Eq. B.1-
B.6. Eq. B.2 defines IoU based on Eq. B.1. In Eq. B.3, we set min (x̄2, x2) = x2,
max (x̄1, x1) = xImax, min (ȳ2, y2) = y2 and max (ȳ1, y1) = y1 by taking into the
intersection definition in Region I. Also note that x̄1 = xImax, ȳ1 = y1, x̄2 = x2 and

Table B.1: Top-Left space bounds and equations for Bounding Box Generator. See

Fig. 4.4 for the regions.

Region Min Bound Max Bound Equation

I x̄1 = x1 x̄1 = x2 − (x2 − x1)× T ȳ1 = y2 −
A(B∩B̄)

T
+A(B∩B̄)−A(B)

(x2−x̄1)

II ȳ1 = y1 ȳ1 = y2 − A(B)×T
x2−x1

x̄1 = x2 − A(B∩B̄)×A(B)
(y2−ȳ1)

III ȳ1 = y1 ȳ1 = y2 − A(B)×T
x2−x1

x̄1 = x2 −
A(B∩B̄)

T
−A(B)+A(B∩B̄)

(y2−ȳ1)

IV ȳ1 = (y2×(T−1))+y1

T
ȳ1 = y1 x̄1 = x2 − A(B)

T×(y2−ȳ1)
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ȳ2 = y2 in this case. In Eq. B.4-B.6, we just rearrange the terms to have xImax as a
left hand side term.

IoU(B, B̄) =
A(B ∩ B̄)

A(B) +A(B̄)−A(B ∩ B̄)
(B.1)

=
(min (x̄2, x2)−max (x̄1, x1))× (min (ȳ2, y2)−max (ȳ1, y1))

(x2 − x1)× (y2 − y1) + (x̄2 − x̄1)× (ȳ2 − ȳ1)−A(B ∩ B̄)
(B.2)

⇒ T =
(x2 − xImax)× (y2 − y1)

(x2 − x1)× (y2 − y1) + (x2 − xImax)× (y2 − y1)− (x2 − xImax)× (y2 − y1)

(B.3)

⇒ (x2 − x1)× (y2 − y1)× T = (x2 − xImax)× (y2 − y1) (B.4)

⇒ xImax = x2 −
(x2 − x1)× (y2 − y1)× T

(y2 − y1)
(B.5)

⇒ xImax = x2 − (x2 − x1)× T (B.6)

Now since we know the values of x̄1 based on the bounds, we can derive the Eq.

4.2 for any ȳ1 value in equations by moving within bounds. Since A(B ∩ B̄) =

(x2 − x̄1) × (y2 − y1), it does not rely on ȳ1 and we directly use A(B ∩ B̄) in the

following equations:

IoU(B, B̄) =
A(B ∩ B̄)

A(B) + (x2 − x̄1)× (y2 − ȳ1)− A(B ∩ B̄)
(B.7)

⇒ T × (x2 − x̄1)× (y2 − ȳ1) = A(B ∩ B̄) + T × A(B ∩ B̄)− T × A(B)

⇒ ȳ1 = y2 −
A(B∩B̄)

T
+ A(B ∩ B̄)− A(B)

(x2 − x̄1)
(B.8)

Table B.1 presents all of the equations derived using the same methodology.

B.2 Details of Finding the Feasible Space for Bottom-Right Point

This section provides the details for findBRFeasibleSpace(B, T,TL(B̄)) function by

following the same approach with the top left corner. However, different from top-left

space this step is required also consider the point generated top-left point. Note that

the size of the polygon in the bottom-right space is affected by the distance between

TL(B̄) and TL(B). Maximum bottom-right polygon size, with exactly the same size

of the top-left polygon, is achieved when TL(B̄) = TL(B). Conversely, bottom-right

polygon degenerates to a point at BR(B) if the sampled TL(B̄) hits the border of the

top-left polygon.
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Table B.2: Bottom-Right space bounds for Bounding Box Generator.

Region Min Bound Max Bound

I ȳ2 = T×A(B)+T×(x2−α)×β+β×(x2−α)−T×ȳ1×(x2−x̄1)
((T+1)×(x2−α)−T×(x2−x̄1))

ȳ2 = y2

II x̄2 = x2 x̄2 = x̄1 +
A(B∩B̄)

T
−A(B)+A(B∩B̄)

(y2−ȳ1)

III ȳ2 = y2 ȳ2 = ȳ1 +
A(B∩B̄)

T
−A(B)+A(B∩B̄)

(x2−x̄1)

IV x̄2 = T×A(B)+T×(y2−β)×α+α×(y2−β)−T×x̄1×(y2−ȳ1)
((T+1)×(y2−β)−T×(y2−ȳ1))

x̄2 = x2

Table B.3: Bottom-Right space equations for Bounding Box Generator.

Region Equation

I x̄2 = x̄1 +
A(B∩B̄)

T −A(B)+A(B∩B̄)

ȳ2−ȳ1

II ȳ2 = ȳ1 +
A(B∩B̄)

T −A(B)+A(B∩B̄)

x̄2−x̄1

III x̄2 = T×A(B)+α×T×(β̂−β)+α×(β̂−β)−T×x̄1×(ȳ2−ȳ1)

(T+1)×(β̂−β)−T×(ȳ2−ȳ1))

IV ȳ2 = T×A(B)+β×T×(α̂−α)+β×(α̂−α)−T×ȳ1×(x̄2−x̄1)
(T+1)×(α̂−α)−T×(x̄2−x̄1))

We add two additional parameters for the sake of clarity: α = max(x̄1, x1), β =

max(ȳ1, y1), α̂ = min(x̄2, x2) and β̂ = min(ȳ2, y2). The bounds and the equations

are derived by the same methodology that is illustrated in the first step presented in

Tables B.2 and B.3 respectively.
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APPENDIX C

PROOF THAT PQ ERROR IS NOT A METRIC

This appendix proves that PQ Error (i.e. (1-PQ)) is not a metric due to the fact that

PQ Error violates triangle inequality1:

Theorem 3. PQ Error, defined by 1 − PQ(G,D), violates triangle inequality, and

hence it is not a metric.

Proof. This is a proof by counter-example. If 1−PQ(G,D) satisfied triangle inequal-

ity, then we would expect ∀A∀B∀C 1−PQ(A,B) ≤ 1−PQ(A, C) + 1−PQ(C,B).

However, Fig. C.1 presents a counterexample, therefore PQ Error (1 − PQ(G,D))

violates triangle inequality and it is not a metric.

1 PQ satisfies the other two metricity conditions, i.e. reflexivity and symmetry.

X

Detection 
Mask

GT 
Mask

IoU |TP| |FP| |FN| PQ 1-PQ LRP

X Y 0.50 0 1 1 0 1 1

X Z 0.71 1 0 0 0.71 0.29 0.58

Z Y 0.71 1 0 0 0.71 0.29 0.58
Y Z

Figure C.1: A counter-example which shows that PQ Error (i.e., 1-PQ) violates

triangle inequality. Hence, PQ Error is not a metric. (a) Three different inputs

(i.e. masks) X , Y and Z. (b) 1 − PQ does not satisfy the triangle inequality

(i.e. 1 − PQ(X, Y ) > 1 − PQ(X,Z) + 1 − PQ(Z, Y )), while LRP does (i.e.

LRP(X, Y ) ≤ LRP(X,Z) + LRP(Z, Y )). See Chapter 2 for the notation.
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APPENDIX D

PROOF THAT LRP ERROR IS A METRIC

This appendix proves that, unlike PQ Error (Appendix C), LRP Error is a metric if the

localisation error is a metric (i.e. 1− lq(·, ·)). In our proof, we obtain LRP Error us-

ing a reduction from Deficiency Aware Subpattern Assignment (DASA) performance

metric [155] from point multitarget tracking literature. Note that DASA is a proven

metric.

Theorem 4. LRP is a metric.

Proof. DASA metric is defined as:

ē(c)
p (G,D) :=

l

Z

NTP

l

 1

NTP

|G|∑
i=1

I[d(gi, dgi) < c]d(gi, dgi)
p

 (D.1)

+

(
cpNFP

l

)
+

(
cpNFN

l

))1/p

,

where l = max(G,D), Z = NTP +NFP +NFN, I[·] is the indicator function, d(gi, dgi)

is an arbitrary metric, c is the cut-off length to validate TPs (i.e. TP assignment

threshold) based on d(gi, dgi), and finally p is the lp-norm parameter (see Chapter 2

for the rest of the notation).

First, we set the lp-norm parameter, p, as 1 and simplify the definition:

1

Z

 |G|∑
i=1

I[d(gi, dgi) < c]d(gi, dgi)

+ cNFP + cNFN

 . (D.2)

Second, we incorporate the TP validation criterion of visual object detectors in Eq.

D.2 as follows. A TP is identified if a ground truth, gi, has a corresponding detection

dgi such that lq(gi, dgi) > τ . Note that lq(gi, dgi) ∈ [0, 1]. Then, to have a lower-

better criterion which fits into Eq. D.2, we can rewrite this TP validation criterion
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as 1 − lq(gi, dgi) < 1 − τ . Having obtained the TP criterion, we set d(gi, dgi) =

1− lq(gi, dgi) and c = 1− τ in Eq. D.2:

1

Z

 |G|∑
i=1

I[1− lq(gi, dgi) < 1− τ ](1− lq(gi, dgi))

 (D.3)

+(1− τ)NFP + (1− τ)NFN) ,

which can be rewritten by simplifying the predicate of I[·] as follows:

1

Z

 |G|∑
i=1

I[lq(gi, dgi) > τ ](1− lq(gi, dgi))

 (D.4)

+(1− τ)NFP + (1− τ)NFN) .

Next, we just simplify Eq. D.4 in two steps: (i) We remove the Iverson Bracket by

replacing |G| by NTP in the summation,

1

Z

((
NTP∑
i=1

(1− lq(gi, dgi))

)
+ (1− τ)NFP + (1− τ)NFN

)
, (D.5)

and (ii) finally, noting that dividing by a constant does not violate metricity, in order

to ensure the upper bound to be 1 and facilitate the interpretation of LRP, we divide

Eq. D.5 by 1− τ :

1

Z

(
NTP∑
i=1

1− lq(gi, dgi)

1− τ
+ NFP + NFN

)
= LRP(G,D). (D.6)

To conclude, LRP can be reduced from DASA, a proven metric, and therefore LRP is

a metric.
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APPENDIX E

WEIGHTING THE COMPONENTS OF THE LRP ERROR FOR

PRACTICAL NEEDS OF DIFFERENT APPLICATIONS

LRP Error does not give priority to any of the performance aspects (FP rate, FN

rate and localisation error) and weights each performance aspect by considering their

maximum possible contribution to the total matching error (Section 5.5.1). On the

other hand, depending on the requirements in a given application, one of the perfor-

mance aspects can be given an emphasis. To illustrate a use-case, an online video

object detector may want to gather as much detections as it can after discarding the

“noisy” examples of the still image detector. Note that removing the noisy examples

still requires some thresholding, however, the conventional LRP-Optimal threshold,

balancing the contribution of FPs and FNs, may not be the best solution to fulfill this

requirement, and a lower threshold can be more suitable. In a different use-case, dif-

ferent weights for the components can also be beneficial for evaluation as well. For

example, a ballistic missile detector may not tolerate FNs but can accept more FPs

errors. To this end, Eq. E.1 presents a weighted form of LRP Error:

1

Z

(
NTP∑
i=1

αTP
1− lq(gi, dgi)

1− τ
+ αFPNFP + αFNNFN

)
, (E.1)

where Z = αTPNTP + αFPNFP + αFNNFN, and αTP, αFP and αFN correspond to

the “importance weights” of each performance aspect. Following the interpretation

of LRP (see Section 5), the importance weights imply duplicating each error by the

value of this weight. Accordingly, they are included both in the “total matching error”

(i.e. nominator) and the “maximum possible value of the total matching error” (i.e.

normalisation constant). In order to increase the contribution of a component, the

importance weight of the desired component is to be set larger than 1 (e.g. to double

the contribution of false negatives, then αFN = 2 and αTP = αFP = 1). Note that
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when αTP = αFP = αFN = 1, Eq. E.1 reduces to the conventional definition of LRP

(Eq. 5.2). Finally, we note that this modification naturally violates the symmetry of

the metric properties when αFP 6= αFN.
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APPENDIX F

WHY AVERAGE LRP (ALRP) IS NOT AN IDEAL PERFORMANCE

MEASURE?

This appendix discusses why the recently proposed loss function aLRP Loss [156] is

not an ideal performance measure.

Having a similar intuition to oLRP, we define aLRP Error by averaging the LRP

Errors over the confidence scores (see Chapter 2 for the notation):

aLRP :=
1

|S|
∑
s∈S

LRP(G,Ds). (F.1)

where Ds is the set of detections thresholded at confidence score s (i.e. those de-

tections with larger confidence scores than s are kept, and others are discarded).

However, without any improvement in the detection performance, aLRP Error can

be reduced to oLRP Error with the following two steps:

1. Delete all the detections with s < s∗ from the detection output,

2. Set the confidence score of the remaining detections to 1.00.

This two-step simple algorithm will make the s-LRP curve to be a line determined by

s = s∗ (see Fig. 5.3(c)), and averaging over the confidence scores will yield oLRP.

As a result, considering the fact that the performance with respect to aLRP is affected

without any improvement in the detection performance, we do not prefer aLRP Error

as a performance measure.
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APPENDIX G

THE SIMILARITY BETWEEN PQ AND LRP ERRORS

This appendix derives Eq. 5.8:

1− PQ =
1

Ẑ

(
NTP∑
i=1

1− lq(gi, dgi)

1− 0.50
+ NFP + NFN

)
, (G.1)

where Ẑ = 2NTP + NFP + NFN. LRP and PQ Errors are very similar: Removing 2

(in red) from Ẑ yields 1− PQ = LRP.

Recall from 5.1 that PQ is defined as (see Chapter 2 for the notation):

PQ(G,D) =
1

NTP + 1
2
NFP + 1

2
NFN

(
NTP∑
i=1

IoU(gi, dgi)

)
. (G.2)

First, we replace IoU(·, ·) in Eq. G.2 by lq(·, ·) to align the definitions of LRP and

PQ:

PQ(G,D) =
1

NTP + 1
2
NFP + 1

2
NFN

(
NTP∑
i=1

lq(gi, dgi)

)
. (G.3)
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Then, just by simple algebraic operations, we manipulate Eq. G.3:

PQ = 1− 1 +

NTP∑
i=1

lq(gi, dgi)

NTP + 1
2
NFP + 1

2
NFN

(G.4)

= 1−

1−

NTP∑
i=1

lq(gi, dgi)

NTP + 1
2
NFP + 1

2
NFN

 (G.5)

= 1−
NTP + 1

2
NFP + 1

2
NFN −

NTP∑
i=1

lq(gi, dgi)

NTP + 1
2
NFP + 1

2
NFN

(G.6)

= 1−
NTP −

NTP∑
i=1

lq(gi, dgi) + 1
2
NFP + 1

2
NFN

NTP + 1
2
NFP + 1

2
NFN

(G.7)

= 1−

NTP∑
i=1

1−
NTP∑
i=1

lq(gi, dgi) + 1
2
NFP + 1

2
NFN

NTP + 1
2
NFP + 1

2
NFN

(G.8)

= 1−

NTP∑
i=1

(1− lq(gi, dgi)) + 1
2
NFP + 1

2
NFN

NTP + 1
2
NFP + 1

2
NFN

(G.9)

= 1− 1

Ẑ

(
NTP∑
i=1

1− lq(gi, dgi)

1− 0.50
+ NFP + NFN

)
, (G.10)

where Ẑ = 2NTP + NFP + NFN. As a result, we can rewrite Equation G.10 to express

the PQ Error (i.e. 1-PQ) as follows:

1− PQ =
1

Ẑ

(
NTP∑
i=1

1− lq(gi, dgi)

1− 0.50
+ NFP + NFN

)
(G.11)
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APPENDIX H

MORE EXPERIMENTS WITH LRP ERROR

In addition to the experiments Chapter 5, this appendix demonstrates a use-case of

LRP-Optimal Thresholds, and analyse the latency of LRP computation and the effect

of TP validation threshold, τ , on LRP.

H.1 A Use-Case of LRP-Optimal Thresholds in Video Object Detection

Related Work on Setting the thresholds of the classifiers. Employing visual de-

tectors for a practical application requires a confidence threshold that balances preci-

sion, recall and localisation performance since, otherwise, the resulting output would

be dominated by several false positives with low confidence scores. However, this

topic has not received much attention from the research community and is usually

handled by practitioners in a problem or deployment-specific manner. Convention-

ally, the thresholds of classifiers are set by finding the optimal F-measure on the PR

curve or G-mean on the receiver operating characteristics curve, which do not con-

sider localisation quality. Prior work on setting the classifier thresholds focused on

the probabilistic models [231, 232]. Parambath et al. [233] present a theoretical anal-

ysis of the F-measure, and propose a practical algorithm discretizing the confidence

scores in order to search for the optimal F-measure. Currently, for object detection,

a general single threshold is used for all classes instead of class-specific thresholds

[159].

The Experimental Setup. Here, we demonstrate a use-case where oLRP helps us to

set class-specific optimal thresholds as an alternative to the naive approach of using a

general, class-independent threshold. To this end, we develop a simple, online video
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object detection framework where we use an off-the-shelf still-image object detector

(RetinaNet-50 [18] trained on COCO [13]) and built three different versions of the

video object detector. The first version, denoted with B, uses the still-image object

detector to process each frame of the video independently. The second and third

versions, denoted withG and S, respectively, again use the still-image object detector

to process each frame and in addition, they link bounding boxes across subsequent

frames using the Hungarian matching algorithm [151] and update the scores of these

linked boxes using a simple Bayesian rule (details of this simple online video object

detector is given below). The only difference between G and S is that while G uses a

validated threshold of 0.50 (see Fig. 5.10(b) to notice that the LRP-Optimal Threshold

distribution of RetinaNet has a mean around 0.50) as the confidence score threshold

for all classes, S uses LRP-Optimal Threshold per class. We test these three detectors

on 346 videos of ImageNet VID validation set [234] for 15 object classes which also

happen to be included in COCO.

Details of the Online Video Object Detectors. There are two online video object

detectors: G and S which respectively use the general, class-independent threshold-

ing approach with 0.50 as threshold and the class-specific thresholds. For each of the

online detectors, at each time interval, the detections from the previous and current

frames are associated using the Hungarian algorithm [151] considering a box linking

function and the confidence scores of associated BBs of the current frame are updated

using the score distributions from both frames. Since an online tracker, specifically

[235], is also used in our method, we use the L1 norm of the difference of confidence

score distributions of neighbouring frames and the IoU overlap of the tracker predic-

tion and the detection at current frame. While choosing this box linking function, we

inspired from the tube linking score of [158]. The updated score is estimated using the

Bayes Theorem such that the prior is the updated tubelet score in the previous frame

and likelihood is the currently associated high confidence detection with that tubelet.

In such an update method, even though the updated scores converge to 1 quickly,

which is harmful for lower recall, precision improves in larger recall portions. Also,

we call a BB as “dominant object” if its updated score increases by 0.20. In order

to increase the recall, the disappearance of a “dominant object” is closely inspected

by using the tracker again to predict the possible location, then the cropped region is
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Figure H.1: Example PR curves of the methods on three example classes. Optimal PR

pairs are marked with crosses. Using a LRP-Optimal Threshold balances FP and FN

errors resulting in a stretched PR curve either in recall (e.g.(a)) or precision (e.g.(b))

axis depending on the chosen general threshold. Furthermore, using AP for these

pruned PR curves does not provide consistent performance evaluation.

classified by class-wise binary classifiers (object vs. background).

AP vs. oLRP for Video Object Detection: We compare G with B in order to rep-

resent the evaluation perspectives of AP and oLRP – see Fig. H.1 and Table H.1.

Since B is a conventional object detector, with conventional PR curves as illustrated

in Fig. H.1. On the other hand, in order to be faster, G ignores some of the detections

causing its maximum recall to be less than that of B. Thus, these shorter ranges in

the recall set a big problem in the evaluation with respect to AP. Quantitatively, B

surpasses G by 7.5% AP. On the other hand, despite limited recall coverage, G ob-

tains higher precision than B especially through the end of its PR curve. To illustrate,

for the “boat” class in Fig. H.1, G has significantly better precision after approxi-

mately between 0.5 and 0.9 recall even though its AP is lower by 6%. Since oLRP

compares methods concerning their best configurations, this difference is clearly ad-

dressed comparing their oLRP error in which G surpasses S by 4.1%. Furthermore,

the superiority of G is shown to be its higher precision since FN components of G

and S are very close while FP component of G is 8.6% better, which is also the exact

difference of precisions in their peaks of PR curves.

Therefore, whileG seems to have very low performance in terms of AP, for 12 classes

G reaches better peaks than B as illustrated by the oLRP values in Table H.1. This
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suggests that oLRP is better than AP in capturing the performance details of this kind

methods that uses thresholding.

Effect of the Class-specific LRP-Optimal Thresholds: Compared to G, owing to

the class-specific thresholds, S has 1.7% better AP and 0.5% better oLRP as shown

in Table H.1. However, since the mean is dominated by s∗ around 0.50, it is better

to focus on classes with low or high s∗ values in order to grasp the effect of the

approach. The “bus” class has the lowest s∗ with 27%. For this class, S surpasses

G by 8.7% in AP and 3.9% in oLRP. This performance increase is also observed for

other classes with very low thresholds, such as “airplane”, “bicycle” and “zebra”. For

these classes with lower thresholds, the effect of LRP-Optimal threshold on the PR

curve is to stretch the curve in the recall domain (maybe by accepting some loss in

precision) as shown in the “bus” example in Fig. H.1. Not surprisingly, “cow” is

one of the two classes for which AP of S is lower since its threshold is the highest

and thereby causing recall to be more limited. On the other hand, regarding oLRP,

the result is not worse since this time the PR curve is stretched through the positive

precision, as shown in Fig. H.1, allowing better FP errors. Thus, in any case, lower

or higher, the LRP-Optimal Threshold aims to discover the best PR curve. There

are four classes in total for which G is better than S in terms of oLRP. However,

note that the maximum difference is 0.2% in oLRP and these are the classes with

thresholds around 0.5. These suggest that choosing class-specific thresholds rather

than the general, class-independent thresholding approach increases the performance

of the detector especially for classes with low or high class-specific thresholds.

H.2 Analysing Latency of LRP Computation

To evaluate soft predictions and hard predictions using LRP, we incorporated the cor-

responding LRP variant into the official COCO evaluation [13] and panoptic seg-

mentation repositories [150] respectively. Since the PQ and LRP are very similar in

formulation (Section 5.6), it is obvious that they require very similar time to compute.

Hence, in this section we focus on how much time computing LRP adds to the AP

computation.
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Figure H.2: For each class, oLRP and its components for Faster R-CNN (X101-12)

are plotted against τ . The mean represents the mean of 80 classes.

During the computation of AP, COCO evaluation follows a five-step algorithm: (i)

loading annotations into memory, (ii) loading and preparing results, (iii) per image

evaluation, (iv) accumulating evaluation results, and (v) summarizing (i.e. printing)

the results. Since step (i) and (ii) are independent of the performance measure, and

(v) is a simple printing operation (i.e. it takes less than 3 seconds compute (i), (ii)

and (v) in total) and we do not change (iii) per image evaluation except returning

the computed IoUs of TPs, we analysed the additional latency of computing oLRP

for step (iv) accumulation, in which the per-image evaluation results are combined

into performance values. In order to do that using a standard CPU, we computed

and averaged the runtime of this step using all 32 SOTA models in Table 5.4 on

COCO minival with 5000 images. We observed that LRP computation (including

LRP, oLRP, their components, class-specific LRP-Optimal Thresholds for different

“size” and “maximum detection number” criteria as done by COCO toolkit - see [13]

for details) introduces a negligible overhead with around one second both for (iv)

accumulate step (from 5.8 seconds to 6.6 seconds) and for entire computation (from

38.7 to 39.6 seconds).

H.3 Analyzing the Effect of TP Validation Threshold

Finally, we analyse how LRP is affected from the TP validation threshold parameter,

τ . We use Faster R-CNN (X101-12) (Table 5.4) results of the first 10 classes and

mean-error for clarity, the effect of the τ parameter is analysed in Fig. H.2 on oLRP.

As expected, larger τ values imply lower localisation error (oLRPLoc). On the other

hand, a larger τ causes FP and FN components to increase rapidly, leading to higher

256



total error (oLRP). This is intuitive since at the extreme case, i.e., when τ = 1,

there are hardly any TP (i.e. all the detections are FPs), which makes oLRP to be

1. Therefore, LRP allows measuring the performance of a detector designed for an

application that requires a different τ by also providing additional information. In

addition, investigating oLRP for different τ values represents a good extension for

ablation studies.
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APPENDIX I

A GENERALISATION OF ERROR-DRIVEN OPTIMISATION FOR

RANKING-BASED LOSSES

This appendix presents the algorithm that we proposed in our previous work [156]

and used to obtain the gradients of aLRP Loss (Chapter 7). Since Chapter 6 provides

a more general, simple and interpretable version of this algorithm coined as “Identity

Update”, this part of our paper was not discussed in Chapter 7 for clarity, but still, we

reserve this appendix to discuss our generalisation algorithm for interested readers

considering the fact that aLRP Loss is defined and optimised based on the algorithm

presented in this appendix. We again note that both of our optimisation algorithms

provide the equal gradient values while Identity Update being more interpretable,

simple and general. We highlight the differences of these optimisation algorithms

using footnotes in this appendix.

Given a ranking-based loss function1,

L =
1

Z

∑
i∈P

`(i), (I.1)

defined as a sum over individual losses, `(i), at positive examples (e.g., Eq. 6.2), with

Z as a problem specific normalization constant, our goal is to express L as a sum of

primary terms in a more general form than Eq. 6.12:

Definition 3. The primary term2 Lij concerning examples i ∈ P and j ∈ N is the

loss originating from i and distributed over j via a probability mass function p(j|i).

1 In comparison to the loss definition of Identity Update (Eq. 6.17), this loss formulation does not consider
the target value, hence not easily interpretable. Also, it is limited to the errors defined on positive examples.

2 In comparison to Identity Update, this primary term definition does not consider interclass errors such as the
errors among positives in our RS Loss.
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Formally,

Lij =

`(i)p(j|i), for i ∈ P , j ∈ N

0, otherwise.
(I.2)

Then, as desired, we can express L = 1
Z

∑
i∈P `(i) in terms of Lij:

Theorem 5. L = 1
Z

∑
i∈P

`(i) = 1
Z

∑
i∈P

∑
j∈N

Lij .

Proof. The ranking function is defined as:

L =
1

Z

∑
i∈P

`(i). (I.3)

Since ∀i
∑
j∈N

p(j|i) = 1, we can rewrite the definition as follows:

1

Z

∑
i∈P

`(i)

(∑
j∈N

p(j|i)

)
. (I.4)

Reorganizing the terms concludes the proof as follows:

1

Z

∑
i∈P

∑
j∈N

`(i)p(j|i) =
1

Z

∑
i∈P

∑
j∈N

Lij. (I.5)

Eq. I.2 makes it easier to define primary terms and adds more flexibility on the error

distribution: e.g., AP Loss takes p(j|i) = H(xij)/NFP(i), which distributes error

uniformly (since it is reduced to 1/NFP(i)) over j ∈ N with ŝi ≥ ŝi; though, a skewed

p(j|i) can be used to promote harder examples (i.e. larger xij). Here, NFP(i) =∑
j∈N H(xij) is the number of false positives for i ∈ P .

Now we can identify the gradients of this generalized definition similar to Chen et al.

(Section 6.1): The update in xij that would minimize L is (Eq. 6.16),

∆xij = −(Lij
∗ − Lij), (I.6)

where Lij∗ denotes “the primary term when i is ranked properly”. Note that Lij∗,

which is set to zero in AP Loss, needs to be carefully defined (see Appendix L for a

bad example). With ∆xij defined, the gradients can be derived using Eq. 6.15. The

steps for obtaining the gradients of L are summarized in Algorithm 4.
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Algorithm 4 Obtaining the gradients of a ranking-based function with error-driven

update.

Input: A ranking-based function L = (`(i), Z), and a probability mass function

p(j|i)
Output: The gradient of L with respect to model output s

1: ∀i, j find primary term: Lij = `(i)p(j|i) if i ∈ P , j ∈ N ; otherwise Lij = 0 (c.f.

Eq. I.2).

2: ∀i, j find target primary term: Lij∗ = `(i)∗p(j|i) (`(i)∗: the error on i when i is

ranked properly.)

3: ∀i, j find error-driven update: ∆xij = − (Lij
∗ − Lij) = − (`(i)∗ − `(i)) p(j|i)

(c.f. Eq. 6.16).

4: return 1
Z

(
∑
j

∆xji −
∑
j

∆xij) for each ŝi ∈ ŝ (c.f. Eq. 6.15).
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APPENDIX J

DEFINING AND OPTIMISING ALRP LOSS USING IDENTITY UPDATE

Chapter 7 uses our “A Generalisation of Error-Driven Optimisation for Ranking-

Based Losses” (Appendix I) to define and optimise aLRP Loss. This appendix presents

how aLRP Loss can be defined and its gradients can be obtained using our “Identity

Update” (Section 6.2), which is not only more general and simple-to-use, but also

provides more interpretable loss values. We note that the gradient values obtained

using either of our optimisation algorithms are equal, thus the results will not change.

Definition of aLRP Loss using Identity Update: We use the form of generic loss

formulation (Eq. 6.17) of Identity Update to define aLRP Loss as follows (compare

with Eq. 7.2 to see that Identity Update additionally requires the target, `∗LRP(i), and

measures the error between current and target losses to yield an interpretable loss

value):

LaLRP =
1

|P|
∑
i∈P

(`LRP(i)− `∗LRP(i)) , (J.1)

where `LRP(i) is the LRP Error computed on example i (c.f. Eq. 7.3):

`LRP(i) =
1

rank(i)

(
NFP(i) + Eloc(i) +

∑
k∈P,k 6=i

Eloc(k)H(xik)

)
, (J.2)

and the target LRP Error is used as (c.f. Eq. 7.6):

`LRP(i)∗ =
Eloc(i)
rank(i)

, (J.3)

which completes the definition of aLRP Loss based on Identity Update (please refer

to Chapter 2 for the notation).

Optimisation of aLRP Loss using Identity Update: Computation and optimisation

of a ranking-based loss function using Identity Update requires identifying primary
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terms defined in Eq. 6.18. For aLRP Loss, we obtain the following primary term:

Lij =

(`LRP(i)− `LRP(i)∗) p(j|i), for i ∈ P , j ∈ N

0, otherwise,
(J.4)

where, p(j|i) =
H(xij)

NFP(i)
distributing the error over negatives with larger logits uni-

formly. Using the definitions of `LRP(i) (Eq. J.2) and `LRP(i)∗ (Eq. J.3), Eq. J.4 can

be expressed as:

Lij =


1

rank(i)

(
NFP(i) +

∑
k∈P,k 6=i

Eloc(k)H(xik)

)
H(xij)

NFP(i)
, for i ∈ P , j ∈ N

0, otherwise,

(J.5)

which is equal to the update in difference transform identified in Chapter 7 (c.f. Eq.

7.7), simply concluding the derivation.
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APPENDIX K

DETAILS OF ALRP LOSS

This appendix provides details for aLRP Loss.

K.1 A Soft Sampling Perspective for aLRP Localisation Component

In sampling methods, the contribution (wi) of the ith bounding box to the loss function

is adjusted as follows (Chapter 3):

L =
∑

i∈P∪N

wiL(i), (K.1)

where L(i) is the loss of the ith example. Hard and soft sampling approaches differ

on the possible values of wi. For the hard sampling approaches, wi ∈ {0, 1}, thus a

BB is either selected or discarded. For soft sampling approaches, wi ∈ [0, 1], i.e. the

contribution of a sample is adjusted with a weight and each BB is somehow included

in training. While this perspective is quite common to train the classification branch

[33, 18]; the localisation branch is conventionally trained by hard sampling with some

exceptions (e.g. CARL [33] sets wi = ŝi where ŝi is the classification score – Chapter

3).

Here, we show that, in fact, what aLRP localisation component does is soft sampling.

To see this, first let us recall the definition of the localisation component:

LaLRP
loc =

1

|P|
∑
i∈P

1

rank(i)

(
Eloc(i) +

∑
k∈P,k 6=i

Eloc(k)H(xik)

)
, (K.2)

which is differentiable with respect to the box parameters as discussed in Chapter

7. With a ranking-based formulation, note that (i) the localisation error of a positive

example i (i.e. Eloc(i)) contributes each LRP value computed on a positive example
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j where ŝi ≥ ŝj (also see Fig. 7.3), and (ii) each LRP value computed on a positive

example i is normalized by rank(i). Then, setting L(i) = Eloc(i) in Eq. K.1 and

accordingly taking Eq. K.2 in Eloc(i) paranthesis, the weights of the positive examples

(i.e. wi = 0 for negatives for the localisation component) are:

wi =
1

|P|

(( ∑
k∈P,k 6=i

H(xki)

rank(k)

)
+

1

rank(i)

)
. (K.3)

Note that L(i) is based on a differentiable IoU-based regression loss and wi is its

weight, which is a scaler. As a result H(xki) in Eq. K.3 does not need to be smoothed

and we use a unit-step function.

K.2 The Relation between aLRP Loss Value and Total Gradient Magnitudes

Here, we identify the relation between the loss value and the total magnitudes of the

gradients following the generalized framework due to the fact that it is a basis for our

self-balancing strategy introduced in Section 7.3.2 as follows:∑
i∈P

∣∣∣∣∂L∂ŝi
∣∣∣∣ =

∑
i∈N

∣∣∣∣∂L∂ŝi
∣∣∣∣ ≈ LaLRP. (K.4)

Since using our generalization of error-driven optimisation or Identity Update both

guarantees
∑

i∈P

∣∣∣ ∂L∂ŝi ∣∣∣ =
∑

i∈N

∣∣∣ ∂L∂ŝi ∣∣∣ (Chapter 6), here we show that the loss value is

approximated by the total magnitude of gradients. Based on Eq. 6.15, total gradients

of the positives can be expressed as:∑
i∈P

∣∣∣∣∂L∂ŝi
∣∣∣∣ =

∣∣∣∣∣ 1

|P|
∑
i∈P

∑
j∈N

∆xij

∣∣∣∣∣. (K.5)

Since ∆xij ≥ 0,

1

|P|
∑
i∈P

∑
j∈N

∆xij. (K.6)

Replacing the definition of the ∆xij by −(L∗ij − Lij) yields:

− 1

|P|
∑
i∈P

∑
j∈N

(L∗ij − Lij) = − 1

|P|

(∑
i∈P

∑
j∈N

L∗ij −
∑
i∈P

∑
j∈N

Lij

)
(K.7)

=
1

|P|
∑
i∈P

∑
j∈N

Lij −
1

|P|
∑
i∈P

∑
j∈N

L∗ij. (K.8)
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In our generalization of error-driven update (Appendix I), the first part (i.e 1
|P|
∑
i∈P

∑
j∈N

Lij)

yields the loss value, L. Hence:∑
i∈P

∣∣∣∣∂L∂ŝi
∣∣∣∣ = L − 1

|P|
∑
i∈P

∑
j∈N

L∗ij. (K.9)

Reorganizing the terms, the difference between the total gradients of positives (or

negatives, since they are equal – see Theorem 2) and the loss values itself is the sum

of the targets normalized by number of positives:

L −
∑
i∈P

∣∣∣∣∂L∂ŝi
∣∣∣∣ =

1

|P|
∑
i∈P

∑
j∈N

L∗ij. (K.10)

Compared to the primary terms, the targets are very small values (if not 0). For

example, for AP Loss LAP
ij
∗

= 0, and hence, loss is equal to the sum of the gradients:

L =
∑

i∈P

∣∣∣ ∂L∂ŝi ∣∣∣.
As for aLRP Loss, the target of a primary term is Eloc(i)

rank(i)

H(xij)

NFP (i)
, hence if H(xij) = 0,

then the target is also 0. Else if H(xij) = 1, then it implies that there are some negative

examples with larger scores, and rank(i) and NFP (i) are getting larger depending on

these number of negative examples, which causes the denominator to grow, and hence

yielding a small target as well. Then ignoring this term, we conclude that:∑
i∈P

∣∣∣∣∂L∂ŝi
∣∣∣∣ =

∑
i∈N

∣∣∣∣∂L∂ŝi
∣∣∣∣ ≈ LaLRP. (K.11)

K.3 Self-balancing the Gradients Instead of the Loss Value

Instead of localisation the loss,LaLRP
loc , we multiply ∂L/∂B by the averageLaLRP/LaLRP

loc

of the previous epoch. This is because formulating aLRP Loss as LaLRP
loc + wrLaLRP

loc

where wr is a weight to balance the tasks is different from weighing the gradi-

ents with respect to the localisation output, B, since weighting the loss value (i.e.

LaLRP
loc + wrLaLRP

loc ) changes the gradients of aLRP Loss with respect to the classifi-

cation output as well since LaLRP
loc , now weighed by wr, is also ranking-based (has

rank(i) term). Therefore, we directly add the self balance term as a multiplier of

∂L/∂B and backpropagate accordingly. On the other hand, from a practical per-

spective, this can simply be implemented by weighing the loss value, LaLRP
loc without

modifying the gradient formulation for LaLRP
cls .
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APPENDIX L

ADDITIONAL EXPERIMENTS WITH ALRP LOSS

This appendix presents more ablation experiments, the anchor configuration we use

in our models and the effect of using a wrong target for the primary term in the error-

driven update rule.

L.1 More Ablation Experiments: Using Self Balance and GIoU with AP Loss

We also test the effect of GIoU and our Self-balance approach on AP Loss, and

present the results in Table L.1:

• Using IoU-based losses with AP Loss improves the performance up to 1.0 APC

as well and reaches 36.5 APC with GIoU loss.

• Our SB approach also improves AP Loss between 0.7 - 1.2 APC, resulting in

37.2APC as the best performing model without using wr. However, it may

not be inferred that SB performs better than constant weighting for AP Loss

without a more thorough tuning of AP Loss since SB is devised to balance the

gradients of localisation and classification outputs for aLRP Loss (see Section

K.2).

• Comparing with the best performing model of AP Loss with 37.2APC, (i) aLRP

Loss has a 1.7APC and 1.3oLRP points better performance, (ii) the gap is

4.0APC for AP90, and (iii) the correlation coeffient of aLRP Loss, preserves the

same gap (0.48 vs 0.44 comparing the best models for AP and aLRP Losses),

since applying these improvements (IoU-based losses and SB) to AP Loss does

not have an effect on unifying branches.
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Table L.1: Using Self Balance and GIoU with AP Loss. For optimal LRP (oLRP),

lower is better.

Lc Lr SB APC AP50 AP75 AP90 oLRP ρ

AP Loss [37]

Smooth L1 35.5 58.0 37.0 9.0 71.0 0.45

Smooth L1 X 36.7 58.2 39.0 10.8 70.2 0.44

IoU Loss 36.3 57.9 37.9 11.8 70.4 0.44

IoU Loss X 37.2 58.1 39.2 13.1 69.6 0.44

GIoU Loss 36.5 58.1 38.1 11.9 70.2 0.45

GIoU Loss X 37.2 58.3 39.0 13.4 69.7 0.44

aLRP Loss
with IoU 36.9 57.7 38.4 13.9 69.9 0.49

with IoU X 38.7 58.1 40.6 17.4 68.5 0.48

with GIoU X 38.9 58.5 40.5 17.4 68.4 0.48

L.2 Anchor Configuration

The number of anchors has a notable affect on the efficiency of training due to the time

and space complexity of optimising ranking-based loss functions by combining error-

driven update and backpropagation. For this reason, different from original RetinaNet

using three aspect ratios (i.e. [0.5, 1, 2]) and three scales (i.e. [20/2, 21/2, 22/2]) on

each location, Chen et al. [37] preferred the same three aspect ratios, but reduced

the scales to two as [20/2, 21/2] to increase the efficiency of AP Loss. In our ablation

experiments, except the one that we used ATSS [42], we also followed the same

anchor configuration of Chen et al. [37].

One main contribution of ATSS is to simplify the anchor design by reducing the

number of required anchors to a single scale and aspect ratio (i.e. ATSS uses 1/9

and 1/6 of the anchors of RetinaNet [18] and AP Loss [37] respectively), which is

a perfect fit for our optimisation strategy. For this reason, we used ATSS, however,

we observed that the configuration in the original ATSS with a single aspect ratio and

scale does not yield the best result for aLRP Loss, which may be related to the ranking

nature of aLRP Loss which favors more examples to impose a more accurate ranking,

loss and gradient computation. Therefore, different from ATSS configuration, we find

it useful to set anchor scales [20/2, 21/2] and [20/2, 21/2, 22/2] for aLRPLoss500 and

aLRPLoss800 respectively and use a single aspect ratio with 1 following the original

design of ATSS.
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Figure L.1: (left) The rate of the total gradient magnitudes of negatives to positives.

(right) Loss values.

L.3 Using a Wrong Target for the Primary Term in the Error-driven Update

Rule

As discussed in Chapter 7, Lij∗, the target value of the primary term Lij is non-zero

due to the localisation error. It is easy to overlook this fact and assume that the target

is zero. Fig. L.1 presents this case where Lij∗ is set to 0 (i.e. minimum value of

aLRP). In such a case, the training continues properly, similar to that of the correct

case, up to a point and then diverges. Note that this occurs when the positives start

to be ranked properly but are still assigned gradients since Lij∗ − Lij 6= 0 due to

the nonzero localisation error. This causes
∑
i∈P

∣∣∣ ∂L∂ŝi ∣∣∣ > ∑
i∈N

∣∣∣ ∂L∂ŝi ∣∣∣, violating Theorem 2

(compare min-rate and max-rate in Fig. L.1). Therefore, assigning proper targets is

crucial for balanced training.

L.4 Implementation Details for FoveaBox and Faster R-CNN

In this section, we provide more implementation details on the FoveaBox and Faster

R-CNN models that we trained with different loss functions. All the models in this

section are tested on COCO minival.

Implementation Details of FoveaBox: We train the models for 100 epochs with a

learning rate decay at epochs 75 and 95. For aLRP Loss and AP Loss, we preserve
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the same learning rates used for RetinaNet (i.e. 0.008 and 0.002 for aLRP Loss and

AP Loss respectively). As for the Focal Loss, we set the initial learning rate to 0.02

following the linear scheduling hypothesis [138] (i.e. Kong et al. [174] set learning

rate to 0.01 and use a batch size of 16). Following official implementation of AP

Loss, the gradients of the regression loss (i.e. Smooth L1) are averaged over the

output parameters of positive boxes for AP Loss. As for Focal Loss, we follow the

mmdetection implementation which averages the total regression loss by the number

of positive examples. The models are tested on COCO minival by preserving the

standard design by mmdetection framework.

Implementation Details of Faster R-CNN: To train Faster R-CNN, we first replace

the softmax classifier of Fast R-CNN by the class-wise sigmoid classifiers. Instead

of heuristic sampling rules, we use all anchors to train RPN and top-1000 scoring

proposals per image obtained from RPN to train Fast R-CNN (i.e. same with the

default training except for discarding sampling). Note that, with aLRP Loss, the loss

function consists of two independent losses instead of four in the original pipeline,

hence instead of three scalar weights, aLRP Loss requires a single weight for RPN

head, which we tuned as 0.20. Following the positive-negative assignment rule of

RPN, different from all the experiments, which use τ = 0.50, τ = 0.70 for aLRP

Loss of RPN. We set the initial learning rate to 0.04 following the linear scheduling

hypothesis [138] for the baselines, and decreased by a factor of 0.10 at epochs 75

and 95. Localisation loss weight is kept as 1 for L1 Loss and to 10 for GIoU Loss

[93, 100]. The models are tested on COCO minival by preserving the standard design

by mmdetection framework. We do not train Faster R-CNN with AP Loss due to the

difficulty to tune Faster R-CNN for a different loss function.
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APPENDIX M

DETAILS OF RS LOSS

This appendix presents the derivations of gradients and obtains the loss value and

gradients of RS Loss on an example in order to provide more insight.

M.1 Derivation of the Gradients

The gradients of a ranking-based loss function can be determined as follows. Eq. 6.15

states that

∂L
∂ŝi

=
1

Z

( ∑
j∈P∪N

∆xji −
∑

j∈P∪N

∆xij

)
. (M.1)

Our identity update reformulation suggests replacing ∆xij by Lij yielding:

∂L
∂ŝi

=
1

Z

( ∑
j∈P∪N

Lji −
∑

j∈P∪N

Lij

)
. (M.2)

We split both summations into two based on the labels of the examples, and express
∂L
∂ŝi

using four terms:

∂L
∂ŝi

=
1

Z

(∑
j∈P

Lji +
∑
j∈N

Lji −
∑
j∈P

Lij −
∑
j∈N

Lij

)
. (M.3)

Then simply by using the primary terms of RS Loss, defined in Eq. 8.5 as:

Lij =


(`R(i)− `∗R(i)) pR(j|i), for i ∈ P , j ∈ N

(`S(i)− `∗S(i)) pS(j|i), for i ∈ P , j ∈ P ,

0, otherwise,

(M.4)

With the primary term definitions, we obtain the gradients of RS Loss using Eq. M.3.
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Gradients for i ∈ N . For i ∈ N , we can respectively express the four terms in Eq.

M.3 as follows:

•
∑
j∈P

Lji =
∑
j∈P

(`R(j)− `∗R(j)) pR(i|j),

•
∑
j∈N

Lji = 0 (no negative-to-negative error is defined for RS Loss – see Eq.

M.4),

•
∑
j∈P

Lij = 0 (no error when j ∈ P and i ∈ N for Lij – see Eq. M.4),

•
∑
j∈N

Lij = 0 (no negative-to-negative error is defined for RS Loss – see Eq.

M.4),

which, then, can be expressed as (by also replacing Z = |P| following the definition

of RS Loss):

∂LRS

∂ŝi
=

1

|P|

∑
j∈P

Lji +

�
�
�
��

0∑
j∈N

Lji −
�
�
�
��

0∑
j∈P

Lij −
�
�
�
��

0∑
j∈N

Lij

 , (M.5)

=
1

|P|
∑
j∈P

(
`R(j)−��

��*0
`∗R(j)

)
pR(i|j), (M.6)

=
1

|P|
∑
j∈P

`R(j)pR(i|j), (M.7)

concluding the derivation of the gradients if i ∈ N .

Gradients for i ∈ P . We follow the same methodology for i ∈ P and express the

same four terms as follows:

•
∑
j∈P

Lji =
∑
j∈P

(`S(j)− `∗S(j)) pS(i|j),

•
∑
j∈N

Lji = 0 (no error when j ∈ N and i ∈ P for Lji – see Eq. M.4),

•
∑
j∈P

Lij reduces to `S(i)−`∗S(i) simply by rearranging the terms and
∑
j∈P

pS(j|i) =

274



1 since pS(j|i) is a pmf:∑
j∈P

Lij =
∑
j∈P

(`S(i)− `∗S(i)) pS(j|i), (M.8)

= (`S(i)− `∗S(i))

�
��

�
��*

1∑
j∈P

pS(j|i), (M.9)

= `S(i)− `∗S(i). (M.10)

• Similarly,
∑
j∈N

Lij reduces to `R(i)− `∗R(i):

∑
j∈N

Lij =
∑
j∈N

(`R(i)− `∗R(i)) pR(j|i) (M.11)

= (`R(i)− `∗R(i))

��
�
��
�*1∑

j∈N

pR(j|i) (M.12)

= `R(i)− `∗R(i). (M.13)

Combining these four cases together, we have the following gradient for i ∈ P:

∂LRS

∂ŝi
=

1

|P|

(∑
j∈P

(`S(j)− `∗S(j)) pS(i|j) (M.14)

− (`S(i)− `∗S(i))− (`R(i)− `∗R(i))) . (M.15)

Finally, for clarity, we rearrange the terms also by using `∗RS(i)− `RS(i) = −(`S(i)−
`∗S(i))− (`R(i)− `∗R(i)):

1

|P|

(
`∗RS(i)− `RS(i) +

∑
j∈P

(`S(j)− `∗S(j)) pS(i|j)

)
, (M.16)

concluding the derivation of the gradients when i ∈ P .

M.2 More Insight on RS Loss Computation and Gradients on an Example

In Fig. M.1, we illustrate the input and the computation of RS Loss. We also note

here that our Identity Update provides interpretable loss values when the target value

is non-zero (Fig. M.1(b)). Previous work [37, 156] fail to provide interpretable loss

values.
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Input id, i (𝑖 ∈ 𝒫 is underlined)

Logits, Ƹ𝑠𝑖

0 1 2 3 4 5 6 7

3.00 2.00 1.00 0.00 -1.00 -2.00 -3.00 -4.00

Labels, 𝑦𝑖 0.90 0.40 0.00 0.00 0.80 0.00 0.10 0.00

(a) Input of RS Loss (positive if 𝑦𝑖 > 0; else negative)

Current ranking error, ℓ𝑅 𝑖

Current sorting error, ℓ𝑆 𝑖

Target ranking error, ℓ𝑅
∗ 𝑖

Target sorting error, ℓ𝑆
∗ 𝑖

0.00 0.00 N/A N/A 0.40 N/A 0.42 N/A

0.10 0.35 N/A N/A 0.30 N/A 0.38 N/A

0.00 0.00 N/A N/A 0.00 N/A 0.00 N/A

0.10 0.35 N/A N/A 0.15 N/A 0.38 N/A

Ranking Loss, ℓ𝑅 𝑖 − ℓ𝑅
∗ 𝑖 0.00 0.00 N/A N/A 0.40 N/A 0.42 N/A

(b) Current&target error and RS Loss on each 𝑖 ∈ 𝒫 (N/A: negatives; bold: non-zero loss)

Sorting Loss, ℓ𝑆 𝑖 − ℓ𝑆
∗ 𝑖 0.00 0.00 N/A N/A 0.15 N/A 0.00 N/A

Total Loss, (ℓ𝑅 𝑖 +ℓ𝑆 𝑖 ) − (ℓ𝑅
∗ 𝑖 + ℓ𝑆

∗ 𝑖 ) 0.00 0.00 N/A N/A 0.55 N/A 0.42 N/A

RS Loss, ℒ𝑅𝑆 (average over total losses) : 0.24

Figure M.1: An example case to illustrate the computation of RS Loss. (a) The inputs

of RS Loss are logits and continuous ground-truth labels (i.e. IoU). (b) Thanks to

the “Identity Update” (Section 6.2), the loss computed on each example considers the

target error, hence, it is interpretable. E.g. i = 0, 1, 6 have positive current sorting

errors, but already sorted properly among examples with larger logits, which can be

misleading when loss value ignores the target error. Since RS Loss is computed on

positives, N/A is assigned for negatives.

Computation of the Loss. To compute the loss following three-step algorithm, the

first and the third steps are trivial (Fig. 6.1), thus, here we present in Fig. M.2(a) how

the primary terms (Lij) are computed for our example (Fig. M.1) following Eq. M.4.

Optimisation of the Loss. Fig. M.2(b) presents and discusses the gradients obtained

using Eq. M.5, M.16.
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0.00 0.15 0.34 0.34 -0.55 0.14 -0.43 0.00

Current Errors 

𝑝𝑅(𝑗|𝑖)

Target Ranking 

𝑝𝑆(𝑗|𝑖)

𝐿𝑖𝑗: 

Target Errors 

Primary terms of i=4

ℓ𝑅 4 = 0.40 ℓ𝑆 4 = 0.30

0.00 0.00 0.50 0.50 0.00

0 4 1 2 3

ℓ𝑅
∗ 4 = 0.00 ℓ𝑆

∗ 4 = 0.15

0.00 1.00 0.00 0.00 0.00

0.00 0.15 0.20 0.20 0.00

0 4 1 6 2 3 5

ℓ𝑅 6 = 0.43 ℓ𝑆 6 = 0.38

0.00 0.00 0.33 0.33 0.00 0.33 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00

ℓ𝑅
∗ 6 = 0.00 ℓ𝑆

∗ 6 = 0.38

0.00 0.00 0.14 0.14 0.00 0.14 0.00

Primary terms of i=6

(a) Obtaining Primary Terms

(b) Gradients of RS Loss

A positive with a high logit but small 

label will be demoted.

Promote i.e.
𝜕ℒ

𝜕 Ƹ𝑠𝑖
< 0

Demote, i.e.
𝜕ℒ

𝜕 Ƹ𝑠𝑖
> 0

Figure M.2: An example case to illustrate the computation of primary terms in RS

Loss. (a) The computation of primary terms. We only show the computation for

positives i = 4 and i = 6 since for i = 0 and i = 1 the total loss is 0 (see Fig. M.1(b));

and RS Loss does not compute error on negatives by definition (i.e. discretizes the

space only on positives). To compute primary terms, Lij , one needs current errors,

target errors and pmfs for both ranking and sorting, which are included in the figure

respectively. In order to compute the target errors on a positive i ∈ P , the examples

are first thresholded from ŝi and the ones with larger (i.e. ŝj ≥ ŝi) logits are obtained.

Then, target rankings are identified using continuous labels. The ranking and sorting

errors computed for the target ranking determines target errors, `∗R(i) and `∗S(i). The

ranking and sorting losses, `R(i) − `∗R(i) and `S(i) − `∗S(i) respectively, are then

distributed over examples causing these losses uniformly via pmfs pS(j|i) and pR(j|i)
to determine pairwise errors, i.e. primary terms. (b) The gradients are obtained simply

by using primary terms as the update in Eq. M.1 following identity update yielding

Eq. M.5 and M.16 for negatives and positives respectively. Thanks to the novel

sorting objective, RS Loss can assign a gradient to suppress a positive example when

it is not ranked among positives accordingly wrt its continuous label (e.g. i = 1).
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APPENDIX N

COMPARATIVE ANALYSIS OF RS LOSS AND ALRP LOSS

This appendix provides a comparative analysis of our RS Loss and our aLRP Loss

and presents why RS Loss converges faster and performs better. In the following, we

list and analyse our four observations on aLRP Loss [156] based on our comparative

analysis with RS Loss:

Observation 1: Competing tasks for the bounded range of aLRP Loss degrades

performance especially when the models are trained 12 epochs following the

common training schedule.

To illustrate this, we train Faster R-CNN [19] with aLRP Loss and our RS Loss using

two different settings:

• “Standard Training”, which refers to the common training (e.g. [19, 160, 42]):

The network is trained by a batchsize of 16 images with resolution 1333× 800

without any augmentation except the standard horizontal flipping. We use 4

GPUs, so each GPU has 4 images during training. We tune the learning rate of

aLRP Loss as 0.009 and for our RS Loss we set it to 0.012. Consistent with the

training image size, the test image size is 1333× 800.

• “Heavy Training”, which refers to the standard training design of aLRP Loss

(and also AP Loss): The network is trained by a batch size of 32 images with

resolution 512×512 on 4 GPUs (i.e. 8 images/GPU) using SSD-syle augmenta-

tion [24] for 100 epochs. We use the initial learning rate of 0.012 for aLRP Loss

as validated in Chapter 7, and for our RS Loss, we simply use linear scheduling

hypothesis and set it to 0.024 without further validation. Here, following aLRP

Loss (and AP Loss) design the test image size is 833× 500.
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Table N.1: Due to epoch-based self-balance and competition of tasks for the limited

range, aLRP Loss performs significantly worse in the first epoch. When the model is

trained longer using heavy training (i.e. 100 epochs, SSD-style augmentation [24]),

the default configuration of aLRP Loss, the performance gap relatively decreases at

the end of training, however, the gap is still significant (∼ 2APC) for the standard

training (i.e. 12 epochs, no SSD-style augmentation [24]). All experiments are con-

ducted on Faster R-CNN. COCO-style AP (APC) is reported.

Loss
Function

Heavy Training Standard Training
Epoch 1 Epoch 100 Epoch 1 Epoch 12

aLRP Loss 9.4 40.7 14.4 37.4

RS Loss 17.7 41.2 22.0 39.6

Table N.1 presents the results and we observe the following:

1. For both “heavy training” and “standard training”, aLRP Loss has signifi-

cantly lower performance (17.7APC vs. 9.2APC for heavy training and 22.0APC

vs. 14.4APC) compared to RS Loss: aLRP Loss has a bounded range between 0

and 1, which is dominated by the classification head especially in the beginning

of the training, and hence, the box regression head is barely trained. To tackle

that, we dynamically promoted the loss of box regression head using a self-

balance weight, initialized to 50 and updated based on loss values at the end of

every epoch. However, we observed that this range pressure has an adverse ef-

fect on the performance especially at the beginning of the training, which could

not be fully addressed by self-balance since in the first epoch the SB weight is

not updated.

2. While the gap between RS Loss and aLRP Loss is 0.5APC for “heavy training”,

it is 2.2APC for “standard training”. After the SB weight of aLRP Loss is

updated, the gap can be reduced when the models are trained for longer epochs.

However, the final gap is still large (∼ 2APC) for “standard training” with 12

epochs since unlike aLRP Loss, our RS Loss (i) does not have a single bounded

range for which multiple tasks compete, and (ii) uses an iteration-based update

approach, hence SB weight is updated every iteration.
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Observation 2: The target of aLRP Loss is hand-crafted, hence does not have an

intuitive interpretation.

Self-balance (or range pressure – see Observation 1) is not the single reason why RS

Loss performs better than aLRP Loss in both scheduling methods in Table N.1. aLRP

Loss uses the following target error for a positive example i:

`∗aLRP (i) =
Eloc(i)
rank(i)

, (N.1)

where

Eloc(i) =
1− IoU(b̂i, bi)

1− τ
, (N.2)

and τ is the positive-negative assignment threshold. However, unlike the target of RS

Loss for specifying the error at the target ranking where positives are sorted wrt their

IoUs (see Fig. M.2), the target of aLRP Loss is handcrafted and does not have an

intuitive interpretation.

Observation 3: Setting τ in Eq. N.2 to the value of the positive-negative (anchor

IoU) assignment threshold creates ambiguity (e.g. anchor-free detectors do not

have such threshold).

We identify three obvious reasons: (i) Anchor-free methods do not use IoU to as-

sign positives and negatives, (ii) recent SOTA anchor-based methods, such as ATSS

[42] and PAA [43], do not have a sharp threshold to assign positives and negatives,

but instead they use adaptive thresholds to determine positives and negatives during

training, and furthermore (iii) anchor-based detectors split anchors as positives and

negatives; however, the loss is computed on the predictions which may have less IoU

with ground truth than 0.50. Note that our RS Loss directly uses IoUs as the continu-

ous labels without further modifying or thresholding them.

Observation 4: Using an additional hyper-parameter (δloc) for ranking-based

weighting yields better performance for the common 12 epoch training.

As also discussed in Section 8.4.2, ranking-based importance weighting of the in-

stances corresponds to (see Chapter 2 for the notation):

wi =
1

|P|

(∑
k∈P

H(xki)

rank(k)

)
. (N.3)
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Table N.2: Using an additional δloc to smooth the effect of ranking-based weighting

can contribute to the performance.

δloc 0.00 0.50 1.00 1.50 2.00 Default

APC 39.3 39.4 39.8 39.9 39.8 39.5

aLRP Loss, by default, prefers not to smooth the nominator (H(xki)) but rank(k) is

computed by the smoothed unit-step function. We label this setting as “default” and

introduce an additional hyper-parameter δloc to further analyse ranking-based weight-

ing. Note that the larger δloc is, the less variance will wis have. In Table N.2, we

compare these different settings on RS-ATSS trained for 12 epochs with our RS Loss,

and observe that with different δloc values, the default ranking-based weighting can

be improved. However, for our RS Loss, we adopt score-based weighting owing to

its tuning-free nature.

282



APPENDIX O

THE RELATION OF RS LOSS WITH LRP ERROR

Similar to aLRP Loss, we also derive our RS Loss based on our performance met-

ric, LRP Error (Chapter 5). This appendix provides how RS Loss can be obtained

originating from LRP Error.

We showed in Eq. 7.3 that the loss form of the LRP Error (Eq. 5.2) is:

`LRP(i) =
1

rank(i)

(
NFP (i) + Eloc(i) +

∑
k∈P,k 6=i

Eloc(k)H(xik)

)
. (O.1)

Simply by manipulating Eq. O.1, we reach O.6:

`LRP(i) =
1

rank(i)

(
NFP(i) +

∑
k∈P

Eloc(k)H(xik)

)
(O.2)

=
NFP(i)

rank(i)
+

∑
k∈P
Eloc(k)H(xik)

rank(i)
(O.3)

=
NFP(i)

rank(i)
+

∑
k∈P
Eloc(k)H(xik)rank+(i)

rank(i)rank+(i)
(O.4)

=
NFP(i)

rank(i)
+

rank+(i)

rank(i)

∑
k∈P
Eloc(k)H(xik)

rank+(i)
(O.5)

=
NFP(i)

rank(i)
+

(
1− NFP(i)

rank(i)

) ∑
k∈P
Eloc(k)H(xik)

rank+(i)
(O.6)

Considering the definitions of the components of LRP (Eq. 5.4-5.6), we can define

the loss forms of localisation and FP components using this notation respectively as,

LRPFP(i) =
NFP(i)

rank(i)
, (O.7)

LRPLoc(i) =

∑
k∈P
Eloc(k)H(xik)

rank+(i)
. (O.8)
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Replacing these definitions in Eq. O.6, we have

= LRPFP(i) + (1− LRPFP(i)) LRPLoc(i) (O.9)

= LRPFP(i) + LRPLoc(i)− LRPFP(i)LRPLoc(i), (O.10)

which comprises the three terms discussed as follows:

• First term. LRPFP(i) = NFP(i)
rank(i)

is the precision error (as in AP Loss), and as a

result, includes the errors between positives and negatives.

• Second term. LRPLoc(i) =

∑
k∈P
Eloc(k)H(xik)

rank+(i)
is the average localisation error of

positives. Noting that it does not require any information from negatives, this

term corresponds to the errors among positives.

• Third term. LRPFP(i)LRPLoc(i) combines classification and localisation er-

rors in order squeeze LRP between 0 and 1. Since the first two terms encodes

both types of errors that we aim to optimise, this term can simply be ignored,

which removes the range pressure arising for aLRP Loss (see Observation 1 in

Appendix N).

Thus, we obtain the RS Loss on a positive example as follows:

`RS(i) = LRPFP(i) + LRPLoc(i) (O.11)

=
NFP(i)

rank(i)
+

∑
k∈P
Eloc(k)H(xik)

rank+(i)
(O.12)

In order to prevent assignment threshold ambiguity (see Observation 3 in Appendix

N), we set τ = 0 in Eloc(k) = 1−IoU(k)
1−τ (see definition of LRP in Eq. 5.2), implying

Eloc(k) = 1− IoU(k). Hence we have,

`RS(i) = LRPFP(i) + LRPLoc(i) (O.13)

=
NFP(i)

rank(i)
+

∑
k∈P

(1− IoU(k)) H(xik)

rank+(i)
(O.14)

Finally, for generalisation over different classification problems, we simply set IoU

to the continuous ground truth label (i.e. IoU(k) = yk), replace the index subscript k
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by j to obtain the definition of RS Loss (c.f. Eq. 8.3):

`RS(i) =
NFP(i)

rank(i)︸ ︷︷ ︸
`R(i): Current Ranking Error

+

∑
j∈P

H(xij)(1− yj)

rank+(i)︸ ︷︷ ︸
`S(i): Current Sorting Error

. (O.15)

We use RS Loss to train the classification branch by designing a consistent sorting

target different from the handcrafted target of aLRP Loss (see Observation 2 in Ap-

pendix N). As for the box regression and mask prediction branches, we do not prefer

ranking-based weighting originating from aLRP Loss since we observed that it re-

quires tuning an additional hyperparameter, hence for simplicity, instead we employ

score-based weighting (see Observation 4 in Appendix N).

As a conclusion, we say that similar to aLRP Loss, RS Loss originates from LRP

Error and fixes drawbacks of aLRP Loss (see observations in Appendix N).
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APPENDIX P

MORE EXPERIMENTS WITH RS LOSS

This appendix presents more experiments on RS Loss.

P.1 Effect of smoothing unit-step function, the single hyper-parameter, for RS

Loss.

Table P.1 presents the effect of δRS on RS Loss using ATSS. We observed similar per-

formance between δRS = 0.40 and δRS = 0.75. Also note that considering positive-

to-positive errors in the sorting error, we set δRS different from AP Loss and aLRP

Loss, both of which smooth the unit step function by using δRS = 1.00 as validated

by Chen et al. [37].

P.2 Training Cascade R-CNN with RS Loss

Table P.2 shows that using RS Loss to train Cascade R-CNN (RS-Cascade R-CNN)

also improves baseline Cascade R-CNN [20] by 1.0APC. We note that unlike the

conventional training, we do not assign different loss weights over each R-CNN.

Table P.1: We set δRS = 0.50, the only hyper-parameter of RS Loss, in all our exper-

iments.

δRS 0.25 0.40 0.50 0.60 0.75 1.00

APC 39.0 39.7 39.9 39.7 39.8 39.4
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Table P.2: RS Loss improves strong baseline Cascade R-CNN [20].

Method APC ↑ AP50 ↑ AP75 ↑ oLRP ↓
Cascade R-CNN 40.3 58.6 44.0 67.0

RS Cascade R-CNN 41.3 58.9 44.7 66.6

P.3 Hyper-parameters of R-CNN Variants in Table 8.2

A two-stage detector that uses random sampling and does not employ a method to

adaptively set λkt has at least 7 hyper-parameters since (i) for random sampling, one

needs to tune number of foreground examples and number of background examples

to be sampled in both stages (4 hyper-parameters), and (ii) at least 3 λkt s need to

be tuned as the task-balancing coefficients in a loss with four components (Eq.1.1).

As a result, except aLRP Loss and our RS Loss, all methods have at least 7 hyper-

parameters. When the box regression losses of RPN and R-CNN are L1 Loss, GIoU

Loss or AutoLoss, and the network has not an additional auxiliary head, 7 hyper-

parameters aree sufficient (i.e. GIoU Loss [93], Carafe FPN [177] and AutoLoss-A

[178]). Below, we list the methods with more than 7 hyper-parameters:

• FPN [29] uses Smooth L1 in both stages, resulting in 2 more additional addi-

tional hyper-parameters (β) to be tuned for the cut-off from L2 Loss to L1 Loss

for Smooth L1 Loss.

• IoU-Net [130] also has Smooth L1 in both stages. Besides, there is an addi-

tional IoU prediction head trained also by Smooth L1, implying λkt for IoU

prediction head and β for Smooth L1. In total, there are 7 hyper-parameters

in the baseline model, and with these 4 hyper-parameters, IoU-Net includes 11

hyper-parameters.

• To train R-CNN, Libra R-CNN [32] uses IoU-based sampler, which splits the

negatives into IoU bins with an IoU interval width of κ, then also exploits ran-

dom sampling. Besides it uses Balanced L1 Loss which adds 2 more hyper-

parameters to Smooth L1 Loss (3 hyper-parameters in total). As a result, Libra

R-CNN has 11 hyper-parameters in sampling and loss function in total.

288



Table P.3: Analysis whether using continuous labels is useful for instance segmen-

tation. We use IoU to supervise instance segmentation methods except SOLOv2, in

which we use Dice coefficient since bounding boxes are not included in the output.

Using Dice coefficient also provides similar performance with IoU. Binary refers to

the conventional training without continuous labels. APC: COCO-style AP

Label
Segmentation Detection

APC AP50 AP75 APC AP50 AP75

Binary 29.1 49.9 29.4 32.9 53.8 34.2

IoU 29.9 50.5 30.6 33.8 54.2 35.4

Dice 29.8 50.4 30.2 33.5 54.3 35.1

(IoU+Dice)/2 29.6 50.2 30.0 33.4 54.1 34.8

• KL Loss [90] uses Smooth L1 for RPN and initializes the mean and variance

of KL Loss. Hence with these 3 additional it has 10 hyper-parameters in total.

• Dynamic R-CNN [36] uses Smooth L1 for RPN and adds one more hyper-

parameter to the Smooth L1, resulting in 3 additional hyperparameters. As a

result, it has 10 hyper-parameters.

P.4 Using different localisation qualities as continuous labels to supervise in-

stance segmentation methods

In order to provide more insight regarding the employment of continuous labels for

the instance segmentation methods, in addition to discarding continuous labels (c.f.

“None” in Table P.3), we train YOLACT with three different continuous labels: (i)

IoU, as the bounding box quality, (ii) Dice coefficient, as the segmentation qual-

ity, and (iii) the average of IoU and Dice coefficient. Table P.3 suggests that all of

these localisation qualities improve performance against ignoring them during train-

ing. Therefore, we use IoU as the continuous ground truth labels in all of our ex-

periments with the exception of RS-SOLOv2, in which we used Dice coefficient,

yielding similar performance to using IoU (Table P.3), since SOLOv2 does not have

a box regression head.
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Table P.4: Average iteration time of methods trained by the standard loss vs. RS Loss.

We only include Faster R-CNN among multi-stage methods. On average, training

with RS Loss incurs ∼ 1.5× longer time due to its quadratic time complexity similar

to other existing ranking-based loss functions [37, 156].

Method Standard Loss (sec) RS Loss (sec)

Faster R-CNN 0.42 0.82

Cascade R-CNN 0.51 2.26

ATSS 0.44 0.70

PAA 0.57 0.99

Mask R-CNN 0.64 1.04

YOLACT 0.57 0.59

SOLOv2-light 0.64 0.90

P.5 Training time comparison and inference time of methods

Table P.4 compares the single iteration time of RS Loss with other loss functions, and

also provides the inference time of the methods we train. On average, using RS Loss

increases the training time around 1.5 times more.

P.6 Detailed Results

We provide in Table P.5 the detailed performance (i.e. AP-based, oLRP-based perfor-

mance measures and fps) of two-stage methods trained with our RS Loss on COCO

minival.
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